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Summary 
Chemical, biological, and other physical stressors can cause a variety of effects on human and 
ecological health, and assessing the risks associated with them is, both methodologically and 
computationally, considerably more complex than current risk assessment practices. Realising that 
ecological receptors are exposed to toxic mixtures and to natural stressors in a heterogeneous 
environment, proper spatially explicit methods for ecological risk assessment are necessary to evaluate 
the risks posed by the contaminants to wildlife. It further means that explicit contaminant flow through 
the food web is required starting from the soil contamination to the higher level species to model the 
accumulation of contaminants in target species such as top predators. This can be achieved by using a 
food web approach. 
A spatially explicit exposure model was developed at the Department of Environmental Science of the 
Radboud University Nijmegen. This model has been applied to investigate the influence of 
environmental heterogeneity on the exposure of 10 terrestrial vertebrate species to spatially variable 
soil metal contamination in a Dutch floodplain area. However, the model had some limitations. 
Although the model is individually based, only a single organism individual can be modelled at a time, 
implying that interaction between individuals was nonexistent. Further, multiple stress having the 
character of cumulative stress to both chemical stressors (contaminants) and natural stressors (such as 
food scarcity and predation) was implemented. The inclusion of interaction and natural stress is 
important to determine the actual risk posed by chemical stress in relation to other stressors. The 
model generated results that tell which part of a population is potentially at risk, but it does not tell 
whether a population can survive such a risk. The latter would be a more relevant and meaningful 
result, especially for nature managers. 
Therefore, a new model called Eco-SpaCE (Ecological and Spatially explicit Cumulative Exposure 
model), was developed. It is an individual-based model that has been implemented in an object-
oriented programming environment within C++ and using EcoSim libraries. This report is a technical 
report of Eco-SpaCE describing the model structure, the processes modelled, the software 
implementation, and a motivation of the choices made during the model development. 
Eco-SpaCE is a generic model that can predict exposure levels and risks of certain chemical and 
natural stressors for terrestrial vertebrates. It is built in such a way that it can be applied to many 
different locations, with diverse food webs and settings. The model simulates a system that is 
composed of mobile objects representing the organism individuals, in this case terrestrial vertebrates 
of interest, and a 2-dimensional grid of cells that form the landscape in which the individuals live and 
with which they interact. The species to which the individuals belong are arranged in a food web. This 
food web comprises the mobile organisms and their food resources (plant and invertebrates species). 
The system is simulated through time by chronologically initiating discrete events that are essential for 
predicting exposure to multiple stressors, such as movement, foraging, etc. 
Relevant ecological processes have been implemented to simulate population dynamics and be able to 
predict risk of multiple stressors at the population level. These processes are individual growth, 
predation, reproduction, movement, accumulation, and mortality. The object-oriented programming 
approach, which closely resembles the way we perceive the real world, and the flexible C++ 
programming environment facilitated the construct these processes in the model’s software. Model 
verification demonstrated that the processes have been implemented properly and function well. The 
programming environment further assures that the model can be extended with additional modules 
relatively easy. Because of its complexity the model is relatively data intensive and computationally 
demanding. The incorporation of relevant ecological processes into a cumulative exposure model 
enables Eco-SpaCE to directly compare chemical and biological stressors by predicting cumulative 
mortality risk to predation, starvation, and toxication. In such a way the effect of the different stressors 
on population survival can be estimated. This is meaningful information for nature and risk managers 
and gives the model good potential to link risk assessment to risk management. 
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1 Introduction 

1.1 Background 
Although it is generally acknowledged that chemical, biological, and other physical stressors can 
cause a variety of effects on human and ecological health, assessing the risks associated with them is, 
both methodologically and computationally, considerably more complex than current risk assessment 
practices. The interaction between environment and health is far more complex than is commonly 
understood. An understanding of the complexity of cumulative risks is a prerequisite for the 
development of more efficient guidelines to provide data for future regulation of chemicals. For this 
reason it is important that we improve our understanding of complex exposure situations and develop 
adequate and novel tools for risk assessment (NoMiracle, 2006). 

1.1.1 Problem setting 
A major shortcoming of current approaches to environmental risk assessment is that they usually do 
not to allow for site-specific and other spatially detailed evaluations. However, many scientists (e.g. 
Marinussen and Van der Zee 1996; Hope 2000; Korre et al. 2002; Linkov et al. 2002; Gaines et al. 
2005) generally acknowledge that exposure and hence risk is strongly influenced by the spatial 
positions of both receptors and stressors. Realising that human and ecological receptors are not 
exposed to individual substances in a relatively homogeneous environment, but to toxic mixtures and 
to natural stressors in a heterogeneous environment, a site-specific and spatially explicit approach is 
especially important in a truly cumulative approach. Illustrative examples of a heterogeneously 
contaminated environment are floodplains along the embanked floodplains of the lower Rhine River in 
the Netherlands. Due to many years of deposition of contaminated sediments, these floodplains 
contain large amounts of heavy metals. The degree of pollution varies greatly between the various 
floodplains and even within the floodplains, because of both natural processes, i.e. sedimentation, 
erosion and resuspension, and human influences, e.g. excavation of gravel, sand and clay, and the 
construction of embankments and weirs (Kooistra et al., 2001a; Middelkoop, 2002; Kooistra et al., 
2005). Because of the heterogeneity in pollutant concentrations within a floodplain, proper methods 
for ecological risk assessment incorporating spatial aspects of exposure are necessary to evaluate the 
risks posed by the contaminants to wildlife (Kooistra et al., 2001a). It further means that explicit 
contaminant flow through the food web is required starting from the soil contamination to the higher 
level species to model the accumulation of contaminants in target species such as top predators. This 
can be achieved by using a food web approach. The situation sketched above applies to many other 
polluted areas. 

1.1.2 Current state 
A spatially explicit exposure model was developed at the Department of Environmental Science of the 
Radboud University Nijmegen (Loos et al., 2006; Schipper et al., 2008a). This model has been applied 
to investigate the influence of environmental heterogeneity on the exposure of 10 terrestrial vertebrate 
species to spatially variable soil metal contamination in a Dutch floodplain area. Results showed that 
this model worked quite well for predicting internal cadmium and zinc concentration levels in mice 
species; on average, the differences between measured and predicted values ranged from a factor of 
0.96 for the bank vole to 2.5 for the wood mouse (Schipper et al., 2008a) and from 2.1 for the bank 
vole to 2.90 for the common vole (Loos et al., 2008), for cadmium and zinc, respectively. 
However, the model has some limitations. It is constructed in Visual Basic® development system 
Application for Microsoft Excel® spreadsheet software program. Although the model is individually 
based, only a single individual can be modelled at a time. This implies that interaction between 
individuals is nonexistent. Further, multiple stress having the character of cumulative stress to both 
chemical stressors (contaminants) and natural stressors (such as food scarcity, interindividual and 
interspecies competition, and predation) has not yet been implemented. The inclusion of interaction 
and natural stress is important to determine the actual risk posed by chemical stress in relation to other 
stressors. The current model generates results that tell which part of a population is potentially at risk, 
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but it does not tell whether a population can survive such a risk. The latter would be a more relevant 
and meaningful result, especially for nature managers. 

1.1.3 Aim of research 
In order to implement the above mentioned elements, a flexible programming platform is needed that 
facilitates the construction of a model that adequately addresses species interaction and which can be 
made suitable for simulating the effect of multiple stressors (including natural stressors). Toward 
simulating the environment and its processes, it is wise to use an approach that closely resembles the 
way we perceive the real world. Object-orientation is successful in modelling organism individuals 
because its basic concepts closely resemble those ecological principles underlying the representation 
of organisms. For organism individuals and the interactions between them, the object-oriented 
representation is seen as conceptually and technically advantageous (Maley and Caswell, 1993; 
Silvert, 1993; Judson, 1994; Reuter and Breckling, 1994; Downing and Reed, 1996; Mooij and 
Boersma, 1996; Congleton et al., 1997; Holst et al., 1997; Tischendorf, 1997; Derry, 1998; Liu and 
Ashton, 1998; Lorek and Sonnenschein, 1998; Ziv, 1998; Beecham and Farnsworth, 1998; Westervelt 
and Hopkins, 1999; Bian, 2000a,b). In a spatial context, the object-oriented representation is clearly 
suited to phenomena that are perceived as objects. Object-orientation is conceptually compatible with 
a geographic object model and it is straightforward to identify a geographic object with a software 
object and attach to it all necessary attributes, such as physical characteristics, geometry, motion, and 
location-time (Bian 2000a). 

1.1.4 Aim of report 
This report aims at describing the new model, called Eco-SpaCE (Ecological and Spatially explicit 
Cumulative Exposure model), implemented in an object-oriented programming environment. The 
report focuses on the model structure, the processes modelled, the software implementation, and a 
motivation of the choices made during the model development. 

1.2 Report Outline 
Chapter 2 describes the purpose of the model; the problem being addressed. In the next chapter 
(Chapter 3), the model concept applied and the programming platform will be discussed in more 
detail. Chapter 4 explains the structure of the model, thereby describing the different entities 
represented in the model. In chapter 5 the dynamics and processes of the model entities will be 
specified in detail, both conceptually and the way it has been implemented into the software. Further, 
chapter 6 outlines the user interface and output of model results. Chapter 7 contains the model settings 
and describes the results specific for some scenarios run for model verification. Finally, chapter 8 
discusses the model and gives conclusions and further recommendations. 
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2 Model Purpose 
Starting point of this research is the Eco-SpaCE model; a generic model that can predict exposure 
levels and risks of certain chemical and natural stressors for terrestrial vertebrates. The model 
simulates a system that is composed of mobile objects representing the organism, in this case 
terrestrial vertebrates of interest, and a 2-dimensional grid of cells that form the landscape in which the 
organisms live and with which they interact. The system is simulated through time by chronologically 
initiating discrete events that are essential for predicting exposure to multiple stressors, such as 
movement, foraging, etc. 
The model is built in such a way that it can be applied to many different locations, with diverse food 
webs and settings. However, the model has been parameterised for and applied to a specific case 
study, i.e. heavy metal contamination in a Dutch river floodplain. For reasons of clarity, the model will 
be explained with examples of the case study setting. 

2.1 Research questions and modelled endpoints 
The Eco-SpaCE model should potentially be able to answer the research questions listed below. 
Therefore, the model should be constructed in such a way that its structure and software 
implementation are suitable and facilitate module applications that can deal with this kind of 
questions. This report describes the development of the Eco-SpaCE model as a generic software tool 
that takes into account these research questions. The long term aim is to predict effects of multiple 
stressors at the population level. However, this goal can not be realised instantly. The short term aim is 
to predict exposure levels to individuals. At the current stage some modules are given a temporary and 
simplified interpretation. These modules will be elaborated in more detail during later stages, e.g. to 
include the effects of individual and population interactions on exposure. 
 
Research questions to be answered by the model include:  

1. Are certain species potentially threatened by contamination? 
2. Can a species survive a certain mixture of chemical(s) and natural stressors? 
3. Which stressors are causing the highest risk and what is the contribution of chemical stress to 

the overall stress? 
4. Does the model adequately predict exposure to contamination? 

 
In order to address the above questions the model estimates the following endpoints: 

1. Risk indicator, calculated as exposure concentration of organisms divided by the Predicted No 
Effect Concentration. 

2. Survival of a species, expressed as the number of individuals 
3. Number and causes of death, in order to compare the different stressors and to quantify the 

contribution of the chemical stressors.  
4. Internal concentration in organisms 

 

2.2 Case study 

2.2.1 Location 
This model is applied to the study area ‘the Afferdensche en Deestsche Waarden’ (ADW; Figure 1), 
an embanked floodplain located along the Waal River, the main distributary of the Rhine River in the 
Netherlands. The reason to choose for this particular area is twofold. Firstly, the data availability: soil 
concentrations of heavy metals are available, as well as data on inundation, vegetation and data to 
validate the model. Secondly, the floodplain is moderately and spatially heterogeneously polluted with 
heavy metals (Van Vliet et al., 2005) and subjected to an ecological rehabilitation programme since 
1995 (Zandberg, 1999). It is therefore an area where species might be at risk and determining these 
potential risks is valuable because they are relevant information for engineers and managers involved 
in the nature rehabilitation. 
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Currently, the floodplain is the subject of an ecological rehabilitation program in which safety 
precautions against high river discharges are combined with the conversion of agricultural land into 
natural floodplain ecosystems. Nature development is foreseen for almost the whole area (Ministry of 
V&W 2001) and hence a realistic assessment of ecological risks is highly relevant for this floodplain. 

 
Figure 1: Afferdensche and Deestsche Waarden study area, river floodplain along the river Waal, the 
Netherlands 
 
The ADW floodplain measures about 285 hectares. During the past decades, large amounts of 
sediment and particulate-bound heavy metal pollution were deposited on the floodplain (Middelkoop 
& Asselman 1998). Because the concentrations of these heavy metals show large spatial variability in 
floodplain soils (Middelkoop & Asselman 1998; Middelkoop 2000; Thonon 2006), floodplains seem 
ideal locations for modelling in a spatially explicit manner. 
The top soil consists of loamy clay deposited by the river with an average organic matter content of 
7.3 ± 3.3%, a clay/silt content of 51.7 ± 19.1%, and a pH of 7.3 ± 0.2 (Wijnhoven et al., 2006). The 
area between summer dike and winter dike is periodically inundated during high river discharges. 
Because this floodplain is embanked, water leaves the floodplain after flooding mainly by seepage 
towards the river channel. Once flooded, it takes about two to three weeks for the floodplain to fall dry 
after the water level in the river has dropped below the height of the summer embankments 
(Wijnhoven et al., 2006). 

2.2.2 Food web 
The model is applied to a selection of 10 terrestrial vertebrate species which build up a food web of 
three levels (Figure 2). For the top level, i.e. the third level, four top predators were selected: little owl 
(Athene noctua), kestrel (Falco tinnunculus), weasel (Mustela nivalis), and badger (Meles meles). The 
badger, little owl and kestrel are so-called target species for Dutch river floodplains (Postma et al. 
1996; Bal et al. 2001). The weasel and kestrel are currently present in the study area. According to the 
diet preferences of the four top predators, six small mammalian species were selected for the second 
food web level, i.e. wood mouse (Apodemus sylvaticus), bank vole (Clethrionomys glareolus), 
common vole (Microtus arvalis), common shrew (Sorex araneus), European mole (Talpa europaea), 
and rabbit (Oryctolagus cuniculus). The first food web level consists of plants and invertebrates, i.e. 
earthworms, insects, spiders, gastropods, isopods, vegetation, fruits, and maize. 
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Figure 2: Schematic overview of the food web, consisting of three levels (plants and invertebrates, 
small mammals, and top predators) and their predator-prey relations (predators feeding on first and on 
second level prey species indicated with dashed and solid lines, respectively) 
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3 Modelling concept and platform 

3.1 Introduction 
The Eco-SpaCE model described in this report can be classified as an individual-based model (IBM) 
implemented in an object oriented programming platform (OOP). It is not a coincidence that the model 
is implemented using such an approach. This chapter tries to clarify the reason for this choice. 

3.2 Individual-based modelling 
For the purpose of studying autecological relations of individuals to the environment (including the 
physiological properties enabling them to certain performances) and the population level, the 
individual-based approach is well-suited (Breckling, 2002). The basic concept of Individual-Based 
Modelling (IBM) is simple and appealing: build a model of an organism individual, build a model of 
the environment, and let a computer create multiple individuals and simulate the interactions of the 
individuals with each other and the environment. With an individual-based model, an ecosystem is 
represented as a large collection of interacting organism individuals. Population-level dynamics, 
therefore, are elicited in simulation by summing the collective activities of many individuals. Thus, 
with this approach, the basic unit for modelling is the individual, which is portrayed as a discrete 
object, whose state is usually described by a number of attributes. An individual’s behaviour is 
modelled with various rules that represent its potential interactions with other individuals and with its 
environment (Parrott and Kok 2000). In many ways, building a model of an individual is easier than 
building a model of a population: individuals can be tested in controlled ways that populations cannot, 
and are more limited in their range of responses and therefore more predictable in their behaviour than 
are populations (Rose 2000). 
The domain of individual-based modelling is the analysis and explanation of complex population 
patterns. It is used to link activity and behavioural patterns on the level of single individuals with 
population developments and spatial configurations (Breckling et al. 2005). Individual-based models 
extend the potential of ecological models to cope with spatial heterogeneity and complex ecological 
interaction networks with variable structures (Breckling et al. 2005). However, IBM has an obvious 
drawback: the modelling of populations individual by individual is that it takes impractically much 
computation time to simulate realistic numbers for most populations, especially if the individual 
behaviour is rather elaborate like in many applied models (Scheffer et al. 1995). 
 
The individual-based approach is in particular well-suited to the following aspects in studying 
autecological relations of individuals to the environment (Breckling et al. 2005): 
·  The link of individual behaviour to eco-energetics and nutrient balances.  

The behaviour of an individual has implications on how its energetic requirements are met. On the 
other hand, certain behavioural traits require energetic expenditure. This relation can be investigated 
in various mutual impacts and trade-offs between these forms, for instance in an organism’s foraging 
strategies. 

·  Spatial organisation of a population.  
Spatially explicit models are very difficult to handle if specified on the population level while this is 
simple and straightforward in an individual-based context. Each individual carries its own spatial 
coordinates as variables together with the code to update them. This implies a generic description of 
the organisms’ movement pattern. As a result, various topics of population ecology can be handled 
which involve spatial heterogeneity. 

 
When carrying out an ecological risk assessment (ERA), we are interested in the effects at the 
population level. Furthermore, spatial heterogeneity of the contaminant distribution and of the 
vegetation are important components. The employment IBM approach seems therefore appropriate 
when constructing an ERA-tool. This is also reflected in other models for ecological risk assessment 
(Topping et al. 2003, Hope 2001, 2005, Wolff 1994, Matsinos and Wolff 2003, Reuter, 2005); they all 
use the IBM approach. 
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When designing IBMs, Railsback (2001) proposes a list of concepts that should be addressed. Issues 
such as emergent vs. imposed behaviours (see section 3.2.1), what kind of adaptation is appropriate 
(see section 5.5), and how fitness is evaluated (see section 5.5.5) should be given a thought and can 
help modellers identify and address the subtle but important formulation decisions that determine 
model success. 

3.2.1 Emergent properties 
Organism individuals continually adapt their behaviour and state in response to internal and external 
conditions, and from these adaptive behaviours of individuals, population dynamics emerge in which 
scientists are interested. Emergence occurs at the system level: system behaviour may emerge from the 
traits of individuals as the individuals interact with each other or when they interact with their 
environment (Grimm and Railsback, 2005). 
Modelling some particular behaviour of an IBM as emerging from adaptive individual traits is 
essentially a mechanistic representation of the behaviour. Instead of simply forcing the behaviour to be 
exhibited, the underlying, individual-level mechanisms that give rise to the behaviour are modelled. 
The primary problem in modelling system behaviours as emergent is finding individual traits that 
cause the system behaviours to emerge. The alternative to emergence is imposing a system behaviour, 
which resembles an empirical approach: instead of representing the mechanisms driving the system, 
one simply forces it to reproduce behaviours observed in real systems. This approach can be a simple, 
easy way to obtain the desired outcomes. Modelling behaviour as emergent has the advantage of being 
more explanatory and general and the disadvantage of being more complex (Grimm and Railsback, 
2005). 
There are two important reasons to use emergence. First, if the purpose of an IBM is to explain how a 
particular system behaviour arises from individual traits, then of course it is essential that the system 
behaviour emerges from adaptive mechanisms acting at the individual level. A successful mechanistic 
model of some process should have the advantage of being generally applicable under a wide range of 
conditions, not just under the conditions used to estimate parameters (Kaiser, 1979; DeAngelis and 
Mooij, 2003). Secondly, emergence helps make an IBM general and easily applied to a wide variety of 
sites and situations (Grimm and Railsback, 2005). Modelling behaviours as emergent can also make 
IBMs surprisingly general. 

3.2.2 Stochasticity 
Aside from modelling processes mechanistically so that system properties emerge, processes in an 
IBM can be modelled stochastically. With a view to IBMs, Grimm and Railsback (2005) define 
stochasticity as the use of random numbers and probabilities to represent processes in an IBM.  
They identify two reasons to choose to represent a process as stochastic, whereby it should be noted 
that this only applies to processes that really should be modelled variable, i.e. when the variable input 
parameter has a relevant influence on the model outcome (Grimm and Railsback 2005). The first 
reason is because too little is known about the process to model it mechanistically. The second reason 
is that, even if the process is well understood, it is relatively unimportant and would require 
unnecessary effort to model mechanistically. Turchin (2003) stated it as follows: representing a 
process as stochastic means that we either are ignorant about the process or that we choose to pretend 
we are ignorant to avoid unnecessary detail. A common use of stochasticity to induce variability is in 
creating the initial population of individuals at the start of a simulation. Many IBMs use stochastic 
processes to reproduce observed behaviours that have been described probabilistically. Stochastic 
methods to reproduce observed behaviours are an empirical approach to modelling individual traits 
(Grimm and Railsback, 2005). The advantages of the stochastic approach are those of empirical 
modelling. If the stochastic model of behaviour is well-supported by observations, it is likely to be 
considered reliable within the range of conditions the observations were made in. 
Stochastic processes can be used as part of an adaptive trait: a sequence of stochastic decisions can 
produce behaviour that increases an individual’s fitness if the probabilities are modelled appropriately 
(Grimm and Railsback, 2005). An example is the correlated random walk movement algorithm 
(further explained in section 5.5.4 Movement), where the behaviour arises from consecutive movement 
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directions, stochastically drawn from a probability distribution, and resulting in a spatial pattern that 
corresponds to visiting suitable habitat more frequently than non-suitable habitat, which increases the 
fitness of the moving individual. 

3.3 Object-oriented programming 
The results of an IBM are closely dependent on its software. One reason, that software design is much 
more important for individual-based models (IBMs) than it is for conventional models, is that the 
results of an IBM are the emergent properties of a system of interacting agents that exist only in the 
software (Ropella et al. 2002). Therefore, using appropriate software engineering methods is a critical 
part of advancing the IBM technique to acceptance as an essential tool for ecology and natural 
resource management (Ropella et al. 2002). The object-oriented programming (OOP) paradigm has 
become the standard approach for discrete-event simulation and individual-based models, because it 
has some important advantages for IBMs (Grimm and Railsback, 2005). For organism individuals and 
the interactions between them, the object-oriented representation is seen as conceptually and 
technically advantageous (Maley and Caswell, 1993; Silvert, 1993; Judson, 1994; Reuter and 
Breckling, 1994; Downing and Reed, 1996; Mooij and Boersma, 1996; Congleton et al., 1997; Holst 
et al., 1997; Tischendorf, 1997; Derry, 1998; Liu and Ashton, 1998; Lorek and Sonnenschein, 1998; 
Ziv, 1998; Beecham and Farnsworth, 1998; Westervelt and Hopkins, 1999; Bian, 2000a,b). 
The primary advantage of using OOP for IBMs, according to Grimm and Railsback (2005), is that it 
makes the code resemble the system being modelled more closely. Creating an IBM in an object-
oriented style can provide a smoother, more natural link between conceptual design and software and 
less abstraction is required to convert an IBM from its written description into working code. The 
object-orientation approach consists of a number of basic concepts. Object-orientation is successful in 
modelling organism individuals because its basic concepts closely resemble those ecological 
principles underlying the representation of organisms (Bian 2003). Object-oriented programming is a 
natural fit to individual-based modelling. For example, the core assumption of object-orientation, 
which states that the world is made of objects, can be easily linked to the existence of organism 
individuals (Bian 2003). 
Object-oriented programming (OOP) represents program code and data in discrete objects, organised 
in classes. The encapsulation concept states that each object has properties, which are represented as 
attributes, and behaviour, which is represented as methods. Attribute values describe the states of the 
object, such as age, sex, weight, location, etc. Each class has a number of methods that define the 
behaviours that objects of the class can execute (Grimm and Railsback, 2005) and the methods can 
change the state of an object. Such a change of state is referred to as an event. The concepts related to 
encapsulation, such as properties and behaviour, can find their counterparts in basic ecological 
principles (Bian 2003). The concept of state is consistent with that in ecology, while the concept of 
event has a general application in the modelling of individual behaviour (Bian 2003). Most individual-
based models use the so-called state-based response concept, where the behaviour of the object 
depends on its state and the behaviour can again change the object’s state. 
The inheritance concept states that all objects are organized in a class hierarchy, and objects in a sub-
class inherit properties and behaviour from its super-class (Bian 2003). Concepts related to inheritance 
match closely many ecological principles. For example, the concept of class hierarchy closely 
resembles taxonomy in ecology. In the object-oriented paradigm, components of a model are 
individual objects, with one or more objects to a class and hierarchies of classes. In a typical object-
oriented IBM there may be several species that are subclasses of a general organism class. Each 
species can inherit some code from the general organism class but also has some species-specific code. 
Similarly, all the individuals of a species have the same code, but each individual has its own state 
variables. Likewise, habitat units may be organized in subclasses (e.g., for meadow, forest, lake).  
With its hierarchical organization of individual objects, object-oriented programming resembles the 
natural systems modelled with IBMs, so it is a natural approach to the constituency of an IBM 
(Ropella et al. 2002). Additionally, it promotes another advantage: building an OOP code requires the 
modeller and programmer to make a number of explicit decisions about how the code is organized 
hierarchical. Making and implementing these decisions can lead to a well-organized, hierarchical code 
design (Grimm and Railsback 2005). 
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Likewise, the concept of association is close to the principle of social relationships between 
organisms, and the concept of aggregation is close to the principle of ecosystem assembly.  
Such a high level of conceptual compatibility between object-oriented concepts and ecological 
principles (Table 1) assures that the use of object-orientation in modelling organism individuals is 
generally efficient (Bian 2003). 
 
IBM OOP 
Entity Object 
State/property Instance variable/attribute 
Behaviour Method 
Interaction / sensing Messages 
Actions in time Events in a scheduler 
Individual behaviour Event 
Time Schedule 
Taxonomy Inheritance / Hierarchy 
Table 1: parallel between IBM concept and OOP concepts 
 
Further, in a spatial context, the object-oriented representation is clearly suited to phenomena that are 
perceived as objects. Object-orientation is conceptually compatible with the geographic object model. 
It is straightforward to identify a geographic object with a software object and attach to it all necessary 
attributes (physical, geometry, motion, and location-time). The motion of an object can be explicitly 
represented as a method that triggers the change of location and time states of the object. Movement 
rules can be implemented within the motion methods. The treatment of location and time as attributes 
of an object permits them to be updated easily and frequently when the object moves. This is one of 
the most critical capabilities of object-orientation for representing dynamic phenomena (Raper and 
Livingstone 1995, Worboys 1994, Kemp and Kowalczyk 1994, Ramachandran et al. 1994, Hamre 
1994). 
OOP implements these conceptual advantages and provides additional technical conveniences. For 
example, OOP makes it easy to use great flexibility in process control; it is simple and natural for any 
object to pass execution control to any other object. This makes it easy to program natural processes 
like interactions among individuals (Grimm and Railsback 2005). Messages are the ways that objects 
tell other objects either to execute a behaviour or to provide some information. Messages typically 
define such important model characteristics as how individuals conduct interactions and sensing 
(Grimm and Railsback, 2005). 
Further, the polymorphism concept of OOP does not have an exact equivalent in ecological principles, 
but it provides technical convenience by allowing the reuse of programming components (Meyer, 
1987; Silvert, 1993). Extendibility is another such technical convenience. It allows a program to be 
extended without the need to modify the original code. Additionally, the OOP approach isolates both 
data and code to make them less subject to unintended alteration (Grimm and Railsback 2005). 
Summarising, object-oriented design is improving the systems analyst's ability to develop software in 
forms which map to the problem space (“real world”), provide modular structures to systems under 
analysis and design, are more easily maintained and modified, and provide for reusability of software 
segments. Object-oriented designs are also easier to test.  
The conceptual model of object-orientation is based on the core assumption that the world is made of 
objects. This assumption implies discreteness. The real world, however, has many phenomena which 
are not easy to assign to discrete “blocks” of information at specific levels of analysis. Real-world 
phenomena often operate in defiance of a simple object decomposition. Many parts of the real world 
are continuous, not discrete, and the choice of where objects begin and end in an object-based design 
can be difficult to discern or may be quite arbitrary. The arbitrary choice of objects can create complex 
interfaces between the objects (Kester 1993). 
Strictly speaking, object-orientation is based on the premise that objects should, where possible, 
correspond to natural features. In contrast to the close resemblance between object-orientation and the 
representation of organisms, object-orientation and the representation of the environment are not well 
matched at the conceptual model level. The conceptual model of the environment, i.e. the field model, 
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is continuous. This mismatch may cause difficulties at the subsequent formalization and 
implementation levels when object-orientation is used to represent the environment (Bian 2003). 
Further, when choosing a raster representation of the environment, whereby every raster cell is 
represented by an individual object, computer resources might become limiting. A large number of 
cells, each with its own ID, properties, and behaviour, can easily overwhelm the available computing 
resources (Laval, 1996) because of required storage for the IDs and attributes and, most critically, the 
execution of method for each cell. The choice of cell size continues to depend on a delicate balance 
between the required level of spatial detail and the acceptable computing burden. The importance of 
this balance increases as the number of cells increases. In this regard, the traditional grid model with 
arrays of simple scalar value may be more efficient than its object-oriented version for representing 
the environment (Bian 2003). The object-oriented grid model is technically more complex than the 
traditional grid model and offers few representational benefits. 
There are a few disadvantages that are integral to the object-oriented approach. The first one is that the 
productivity improvements through re-usability starts only after you have a library. A library generally 
is a collection of functions, constants, classes, objects and templates that extends the language 
providing basic functionality to perform several tasks, like classes to interact with the operating 
system, data containers, manipulators to operate with them and algorithms commonly needed. It also 
means that one must learn the library well before doing any serious programming. This makes the 
need for good documentation (something most programmers dislike) very important.  
Further, it should be noted that calling a procedure or subroutine is still faster than sending a message* 
(Rettig 1987), so the run-time cost is more. An earlier study by Cox (1984) indicated that message 
passing is between 2 to 70 times slower than procedure calling. 

3.3.1 C++ and EcoSim  
For IBMs and natural resource models, available tools include high level simulation languages and 
graphical environments, code libraries (several of which are available specifically for IBMs), and 
existing codes (Lorek and Sonnenschein 1999). Popular programming languages that support OOP, 
and are thus suitable for implementing an IBM, are, for example, C++ (Stroustrup, 1991) and Java 
with many library classes with potentially useful tools and observer capabilities. However, these 
platforms provide little direct support for IBMs so they require the code to be written mainly from 
scratch; they do not provide reusable software designs. There are agent-based modelling frameworks 
and libraries available that directly support the implementation of IBMs. A framework is a set of 
software concepts that provides the overall model structure. It is typically implemented as a code 
library, a set of reusable OOP classes with which the programmer customizes the framework to a 
specific model (Grimm and Railsback, 2005). An example of a library developed for implementing 
IBMs and grid-based models in C++ is EcoSim (Lorek and Sonnenschein 1998, 1999); Swarm (Minar 
et al. 1996) and RePast (North et al. 2006) are frameworks and libraries for implementing all kinds of 
agent-based models and IBMs. Since EcoSim’s libraries facilitate the implementation of an IBM that 
closely resembles the targeted model, C++ in combination with the EcoSim libraries have been 
employed as a starting point for developing the Eco-SpaCE model. 
EcoSim is a C++-class library or framework especially designed to support individual-oriented 
modelling and simulation of ecological systems. EcoSim brings together new advances in object-
oriented discrete event simulation and ecology. The process of implementing individual-oriented 
models is facilitated by providing specific yet extensible classes of those parts that are common to all 
such models (Environmental Informatics, 2005). Users of EcoSim are programmers who want to 
implement their own (complex) individual-oriented models (OFFIS, 2007). Some of the special 
features provided by the framework are: 
·  Specification of static and dynamic properties of individuals. Individuals may perform actions 

at any time during the simulation process. Actions may be triggered by the individuals themselves, 
by other individuals, or by external events. EcoSim implements efficient schedulers to allow even 
thousands of individual actions to be handled. 

                                                      
*sending a message is the mechanism used to communicate between classes, commonly used in object-oriented 
programming 
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·  Specification of dynamically changing environments. Cells of the environment are active 
objects as individuals are. They may perform any task, thereby updating the environment 
periodically or due to events. Cells may be grouped into neighbourhoods or hierarchically, thereby 
defining different spatial scales for an environment. 

·  Support for analysis and animation of generated data during runtime. So called observer-
objects may be connected to any action of any individual (including cells). Observer-objects 
automatically become active whenever an individual performs an action. Observer-objects may 
store those changes for later use or may report them directly to an animation process. 

 
Although EcoSim was primarily designed for use in ecological models it can be used for any spatially 
explicit discrete-event object-oriented model for environmental applications.  
 
Table 2:  EcoSim technical Details 
Software EcoSim  
Version 2.3  
Author Dr. Helmut Lorek et. al.  
Platforms Linux, Solaris and Windows  
Release date 2005-09-20 
Website (URL) http://www.eco-software.org/index 
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4 Model Structure  

4.1 Conceptual model 
Individual-based modelling involves the explicit representation of several entities and components, 
namely (1) organism individuals, (2) a heterogeneous environment, (3) interactions between the 
individuals in the heterogeneous environment, and (4) interactions between the individuals and the 
environment (DeAngelis and Rose, 1992; Maley and Caswell, 1993; Grimm and Uchmanski, 1994; 
Tyler and Rose, 1994; Westervelt and Hopkins, 1999; Lomnicki, 1999; Bian, 2000a). A representation 
of the conceptual model can be seen in Figure 3. Some issues, concerning the representation and 
functionality of important model entities, namely organisms and environment, will be considered in 
this section. 
 

 
Figure 3: Representation of the model entities Environment and Organisms and their relationships 

4.1.1 Environment  
Conceptual compatibility between the environment and a spatial data model is the most important 
factor that determines the efficiency of the modelling (Bian, 2003). The selection of proper 
environment models must balance the representational and technical benefits against the cost of 
achieving these benefits. Gardner and Gustafson (2004) identified two broad categories of spatially 
explicit models: those using vector-based data structures (also referred to as patch-based) for 
representation of the landscape (Vuilleumier and Metzger 2005); and models using grid-based (or 
raster-based) representations of landscapes to simulate the interaction of dispersing individuals with 
the landscape matrix (Allen et al., 1993; Gustafson and Gardner, 1996; Wiegand et al., 1999). The 
former category has been frequently used for organisms, such as insects, which do not continuously 
interact with the landscape while dispersing. The grid-based approach has been used to simulate 
species that move shorter distances per unit time and interact more strongly with landscape features 
(e.g. vertebrates and small mammals). 

Raster 
In spatially explicit ERA modelling, the spatial representation of a landscape is commonly based on 
grid models where the landscape is represented by a finite number of equally sized cells (Topping et 
al. 2003, Hope 2001, 2005, Wolff 1994, Matsinos and Wolff 2003, Reuter, 2005). These cells can be 
squares, triangles, hexagons or any other shape that can be used to tessellate the 2D plane. Each cell 
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contains one or more values, which represent attributes of the landscape such as vegetation types, 
elevation, and temperature. 
Bian (2000a) states that raster GIS are better suited to represent fields than objects since its data 
structure is advantageous for representing spatial continuity, spatial variation, and temporal dynamics. 
Thus the regular grid data model is advantageous for modelling the environment that is heterogeneous 
and dynamic. The simple grid data model does not require the use of sophisticated database 
management systems (Bian 2003). 
The criticisms of grid-based models cover three main lines of argument: (i) the existence of an a 
priori-fixed scale of resolution, (ii) in some cases attributes of cells will need to be aggregated (usually 
an average) at the pre-defined scale and (iii) the limitation in representing line features and topology 
(Laurini and Thompson, 1992). The resolution of grid-based models requires a trade off between 
landscape representation and movement mechanisms. If a grid-based approach is used to represent 
narrow linear features like roads and rivers accurately then the grid will need to be at a very fine scale. 
This fine resolution may not be appropriate for larger landscape features, such as forests, as it may not 
capture all the properties of the feature. For landscape features represented by multiple grid cells, 
parameters associated with the entire landscape feature are distributed into fixed resolution cells 
instead of having one value being assigned to the entire landscape feature. Conversely, with increased 
cell size, linear and point landscape features cannot be represented with sufficient accuracy. If a large 
cell is adopted then the cells that contain linear features, such as roads or streams, will have their 
properties averaged over the entire cell and will not be accurately represented. 
Grid-based models also have limitations for modelling movement as the grid cell resolution for both 
landscape and individual movement are identical (Tischendorf, 1997). That is, the step-time 
movement distance and the organism’s perceptual range are defined by the scale at which the 
landscape is modelled. In these types of models, individuals have to move across adjacent cells in 
predefined directions. 
A significant limitation associated with grid-based operations is the regular partition of space inherent 
in the grid model. The cell size must be determined in advance and remains fixed throughout the 
course of the modelling. The arbitrary moving directions and distances typical of the grid model may 
cause simulation results to be unrealistic (Bian 2003). 
Modelling the movement of individuals that use linear structures (i.e. hedges or rivers) is usually not 
feasible, as these features are generally not adequately represented at the chosen resolution of the 
entire map. 

Vector 
Vector data structures represent landscape features according to their shapes and functions via points, 
polylines, and polygons associated with multiple geographic and non-geographic attributes (Burrough 
and McDonnell, 1998; Bian, 2003). In vector-based models the topological properties of objects (i.e. 
shapes, neighbours and hierarchy), and the relationships between objects can be described explicitly. 
Links between objects can be related to their position or their typology (i.e. all forest patches may be 
related to each other).  
Although less common than grid models, vector models are particularly well adapted to modelling 
landscape features and are a useful method for investigating dispersal processes (Bian, 2003). Vector-
based models provide further developmental opportunities in animal movement simulations such as 
movement along linear network features or between stepping stone habitats. They also allow animal 
choice during dispersal such as animal attraction to specific resources, patch configuration preferences 
or avoidance of human infrastructures.   
While grid-based models require a trade off between landscape representation and dispersal 
mechanisms when choosing an appropriate grid size, this approach is not constrained to a particular 
resolution. Thus small elements like hedges may be included in the model as well as large areas such 
as continuous forest. Different values can be used for patch size, dispersal movement and perceptual 
range. This is not the case in grid-based systems where the perceptual range must correspond to one or 
more cell sizes (e.g. With and Crist, 1995; Gustafson and Gardner, 1996; With et al., 1997, 1999; 
Farnsworth and Beecham, 1999; Bergman et al., 2000; King and With, 2002). 
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The added functionality and flexibility of vector-based models comes with costs (Tischendorf, 1997; 
Bian, 2003). Data handling is complex and computationally demanding. For instance, each time a 
spatial object is changed or created, the topological relationships of the neighbouring objects need to 
be updated. Vector-based models require sophisticated database management, which may incur a 
learning curve and subsequent cost. The vector model is particularly suited for modelling the 
environment composed of landscape features, each of which is perceived to be homogeneous and 
stable (Bian 2003), but is limited in representing gradients of spatially continuous variables (i.e. 
environmental factors), since object attributes are spatial homogeneous. Despite these technical issues, 
vector-based models are well suited for modelling landscapes and investigating dispersal dynamics, as 
they are able to incorporate the geometry of the patch networks and spatial relationships between 
landscape features. 
The most critical limitation of the vector model in supporting individual-based modelling is rooted in 
the data model itself. In GIS that employ the vector model, the data system is organised according to 
the coordinates of polygons, points, and lines, while attributes and topology are attached to these 
coordinates. A change in the location of a feature requires that the coordinates be updated and 
attributes and topology be re-established. Such systems are, therefore, extremely rigid which makes 
the simulation of movement difficult. This critical shortcoming has significantly limited the usefulness 
of the vector data model in individual-based modelling, and in the modelling of individual movements 
in particular (Bian 2003). 
The vector data model is used much less frequently for modelling than is the grid data model. 
Tischendorf (1997) attributed this to logistic reasons associated with the vector model, such as the 
high cost of software, a steep and long learning curve, and the use of proprietary data models. The 
vector data model provides meaningful space partitions but at the expense of complexity in data 
handling (Bian 2003). 
The Eco-SpaCE model aims at simulating exposure in a spatially explicit manner thereby addressing 
the spatial variability of contamination in the study area. The concentration of the contamination is a 
continuous phenomenon. Both the collection of field data and the subsequent spatial interpolation 
process are based on a grid format and contamination is therefore best represented by a raster. Further, 
a raster is easier to implement. For these reasons the environment will be represented as a regular grid 
in the Eco-SpaCE model. 

Layers 
The environment can be constructed by several layers representing the most important environmental 
variables describing the area. For the study area these layers are: vegetation structure or ecotopes, 
inundation, and contaminant concentration in soil. 
Ecotopes are spatial units that are assumed homogeneous with respect to vegetation structure, 
succession stage, and main abiotic factors relevant for plant growth (Klijn and Udo de Haes 1994). 
They can be used to determine where the organisms reside. It can also be used to determine food 
availability, because it gives information about where the prey species reside. 
For the accumulation module, spatial information about chemical contamination in soil substrate is 
required. This is obtained from an interpolation of point data with contaminant concentrations.  

4.1.2 Organisms 

Types 
Species in the Eco-SpaCE model are divided into two main groups: mobile species corresponding to 
the vertebrates (or the 2nd and 3rd food web levels) and immobile species corresponding to the plant 
species and invertebrates (or the 1st food web level). The reason for this division is twofold: first the 
model aims at modelling exposure to stressors especially for terrestrial vertebrates; secondly the nature 
of the species in relation to spatial resolution of the model influences whether it can be assumed as 
mobile or unmoving (rooted in its cell). 
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Functionality 
The aim of the model is to predict exposure levels of chemical stressors in the terrestrial vertebrate 
species modelled. It is thereby important to include all the essential factors that influence the exposure 
to address the interindividual variability. One of these factors is spatial variability. Measured to the 
spatial resolution (i.e. 25 square meters.), the organisms at the second and third food web level should 
be represented as moving organisms, using mechanistic foraging/movement rules such that their 
spatial distribution will emerge and the spatial variation in exposure is explicitly addressed. The plant 
species are non-moving species by definition and the invertebrate species that make up the rest of the 
first food web level are modelled immobile as well, to avoid unnecessary complexity. 
Further, the accumulation of chemical stressors in the terrestrial vertebrates is modelled 
mechanistically to gain more insight in what factors are important in determining exposure levels. The 
accumulation of the stressors in the plants and invertebrates is modelled using empirical relations; this 
study does not aim at understanding the underlying processes. Rather, it merely tries to accurately 
describe the internally accumulated concentrations, because these species serve as food source for the 
terrestrial vertebrates and consequently also as a source of chemical contamination. 
Apart from the above mentioned processes, growth and reproduction are explicitly modelled for the 
small mammals and the top predators. This allows modelling effects of other stressors such as food 
scarcity and the effects on (the survival of) the population. The plant and invertebrate species merely 
serve as a food resource and its growth and regrowth are not modelled. Rather the average standing 
biomass is modelled deterministically, dependent on the date (growth season) and location (ecotope), 
but independent of consumption by predators. 

4.2 Software structure 
The conceptual model described above has been implemented in the EcoSim library written in C++ 
using an object-oriented approach. This section will give some details about the software structure. 
The basic concepts behind the EcoSim structure will be explained. However, for specific details, 
please refer to (Lorek and Sonnenschein 1998, 1999) and to the reference and user manuals (Bohle, 
2002a, 2002b), which can be downloaded at http://www.eco-software.org/software. 
The EcoSim software follows an object-oriented hierarchal structure of classes (Figure 4). The class 
SimulationObject is the base class for all objects that perform some tasks and it is therefore the base 
class for all ecological objects, i.e. all organism individuals and the environment; they can change 
through time and perform tasks. All these objects thereby inherit the ability to generate and consume 
events (Lorek and Sonnenschein, 1999). Events are handled by the class Scheduler, which is therefore 
the simulation engine that mimics time by successively calling and executing new events in 
chronological order.  
In Figure 4 most important EcoSim and Eco-SpaCE model classes are shown in their hierarchal 
context. EcoSim classes are shown in grey and classes specially added for the Eco-SpaCE model are 
shown in blue. 
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Figure 4: Class hierarchy of EcoSim (grey) and Eco-SpaCE extensions (blue) 

4.2.1 Environment 
The environment is represented by a separate class (class Environment), and has been accommodated 
under class SimulationObject, enabling it to register with an object of class Scheduler (i.e. to post an 
event to be scheduled and executed by a scheduler). The environment is made up of multiple cells and 
every cell is an instance of class ExpoCell. Cells can have attributes, which describe the state or 
characteristics of the cell. The different layers representing environmental characteristics are modelled 
as attributes of the class ExpoCell. The hierarchy is as follows: Class ExpoCell is a child of class 
Cell_2D, which is a child of class Cell. Class Cell, finally, has been accommodated under class Space, 
which has been accommodated under class SimulationObject. 

Space 
Class Cell is the basic class for modelling space and it is accommodated under class Space. Space is 
an abstract class, implemented in order to support both, continuous and discrete space. Most 
applications discretise space into rectangular cells or patches, but there might also be the need for 
continuous space where each individual knows about its absolute position in space. Those spatial 
geometric properties, such as extent and dimension, are, if needed, defined in subclasses of class Cell 
(and subclasses of class Individual). The most important property of class Space is that it is a subclass 
of class SimulationObject. Thereby each Space-object is an active object, which can register with the 
scheduler to perform some tasks. So Cells may become active as well as Individuals and the 
Environment. Eco-SpaCE does not have any attributes. 
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Cell 
A cell is a logical unit, where individuals may be located. The basic functions of class Cell are to 
contain individuals and to specify the topology it belongs to. The topology needs to be specified to 
facilitate topological queries. So there are two basic things a cell is used for. First individuals may rest 
there and secondly cells may be related to each other via a Topology object. Subclasses of Cell (for 
example class Cell_2D) may define physical properties of cells.  

Cell_2D 
Class Cell_2D defines a cell which may have a position in space (x and y coordinate) as well as an 
extent (width and height). The study area covers about 2.85 km2 and the cells in the model have a 
surface of 25 m2 (5 by 5 m). The environment is thus made up of approximately 225 thousand cells 
(245 by 912). 

ExpoCell 
ExpoCell is a subclass of Cell_2D and is specific to the Eco-SpaCE model. It has various attributes 
and structs, which contain the different layers of the environment that represent important 
environmental characteristics. The ecotope layer is accommodated under the attribute vegetation. 
Contamination is represented as a struct containing all the modelled substances of contamination. 
Species specific habitat quality is also stored in a struct (HabitatQuality) with a unique attribute for 
every species modelled. The ExpoCell also has an Observer class (see section 6.1.1 Observer), for 
efficient visualisation. The Observer class basically observes another class or method, in this case a 
cell of the class ExpoCell and tracks changes, which can consequently invoke other actions such as 
visualising this cell. 

OuterCell (study area) 
Using the topological hierarchy (see section Topology), a class OuterCell has been created. It contains 
one instance which covers the whole simulation area (every lowest-level cell, i.e. the cell of the 
hierarchy with the highest resolution is defined as being within the OuterCell; OuterCell is defined as 
OUTER of all lower level cells). This OuterCell also has an Observer class (see section 6.1.1 
Observer), enabling the program to rapidly extract the number of individuals present in the simulation. 

Topology 
In ecological models, individuals often move relative to their current cell and they do need information 
about neighbouring cells. Further, ecologists often need to view a model on different spatial scales. 
Both are supported in EcoSim using topologies, using neighbourhood topology and hierarchal 
topology, respectively. Cells can thus not only be neighboured, lying next to each other, but they may 
also be ordered in a hierarchy, being located inside or outside other cells. Those are all logical 
relations. 
A Topology object defines relations between different cells. Cells may be neighboured or they may be 
boxed. At the moment, eight different relations are supported that put cells into neighbouring relations. 
Those are north, south, west, east, northwest, northeast, southwest and southeast (Figure 5).  
 

N.W. N. N.E. 

W. ** E. 

S.W. S. S.E. 

Figure 5: Schematic representation of the neighbourhood topology, where cell ** is the active cell and 
cells N. to N.W. are the cells in the eight wind directions. 
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Class Mesh_2D is a predefined topology defining neighbourhood between cells and is a subclass of 
class Topology. A Mesh_2D object is a two dimensional regular grid and this class contains a method 
createMesh(**c, xDim, yDim) which automatically creates a mesh, of cells stored in array **c, with x-
dimension xDim and y-dimension yDim, by defining all the relations between all the cells that make 
up this mesh. The edges of the mesh are boundaries that cannot be crossed; this in contrast to the 
periodic boundary conditions, where the rectangular simulation box is replicated throughout space to 
form an infinite lattice.  
Beside the eight neighbouring relations, there are two further relations: those which order cells in a 
hierarchy. They are the INNER and the OUTER relations. A cell may be defined as being inside 
another cell as well as being outside another cell. For example, in Figure 6, cells a to d of lowest level 
cells (level 1) are defined as being inside cell 2b, of the higher level 2. In turn cell 2b, together with 
cells 2a, c, and d are defined as INNER of cell 3d. The other way round cell 3d is defined as OUTER 
of cells 2a to d. 
 

3b3a

3c 3d

2a 2b

2c 2d

1a 1b

1c 1d

    
Figure 6: Schematic representation of the topological hierarchy, showing three hierarchal levels 

4.2.2 Organisms 
As stated earlier, at the conceptual level there are two different categories of species: (1) those that are 
immobile, i.e. the plants and invertebrates, and (2) those that are mobile, i.e. the vertebrate species. 
This conceptual distinction also influences the software implementation and therefore implementation 
of both species categories will be explained here separately. 

Plants and invertebrates 
Immobile species are implemented into the model as a combination of (1) attributes of the cells that 
make up the environment, (2) a map structure (from the C++ Standard Template Library) and (3) 
runtime formulas. Ecotopes are stored as an attribute of every cell (i.e. instance of class ExpoCell). In 
the class Environment a matrix, relating species’ presence to ecotopes, is stored in a C++ map 
structure. The plants and invertebrates are thus stored in a combination of the cell attribute ecotope 
and a map structure. 
Certain characteristics of plants and invertebrates are defined only as functions of other characteristics, 
and can thus be called only during runtime with corresponding formulas. Such characteristics are for 
example the standing biomass, defined as a function of ecotope and date, or internal contaminant 
concentration, defined as a function of the contaminant concentration in the soil. This limits the 
amount of physical memory that is needed for simulation. This is important, because memory 
increases rapidly with the size of the environment being modelled, e.g. the current study area is 
represented by 223.440 cells. 

Small mammals and top predators 
All mobile individuals are implemented as instances of their species-specific classes, such as class 
Weasel, Kestrel, etc. These classes are subclasses of class ExpoIndividual, which is a subclass of the 
EcoSim class Individual. Like the class Environment and its cells, the class Individual and its 
subclasses are accommodated under class SimulationObject. All objects thereby inherit the ability to 
generate and consume events (see section 5.1.2). See Figure 4 for an overview of the class hierarchy. 
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Individual 
The protocol defined here is rather small: an individual might (but not necessarily) be located in a cell 
and may move out of one and into another cell. It thus has a location is expressed by holding the 
attribute Cell, which has the attributes x coordinate and y coordinate. 

ExpoIndividual 
ExpoIndividual is the subclass of class Individual and it defines some important static, such as sex, and 
dynamic characteristics of organisms, such as age, weight, development stage, and internal 
contaminant concentration. For female individuals there are some extra variables related to 
reproduction, such as the Booleans mature and pregnant. 
Besides the variables, all generic (i.e. non-species specific) processes such as aging and growing are 
implemented at the level of ExpoIndividual. Age (expressed in days) and weight (expressed in grams) 
are updated every day. Stages that are distinguished are the weaning, juvenile and adult stage. Sex is 
determined, simply by assigning either male or female each with a 50% change.  
Further the class ExpoIndividual has been added to implement the definition of the home range of an 
individual; each individual holds a (link to) a large ExpoCell encompassing its home range area, to 
facilitate it perceiving other individuals within this range. 

Species-specific classes: weasel, kestrel & wood mouse 
Individuals of the mobile species are instances of their corresponding species-specific class (e.g. class 
WoodMouse or Weasel). In these classes, all methods/behaviours, such as movement, reproduction, 
daily activity patterns, etc., that are specific to the species are defined (see Chapter 5 for the details 
and implementation of these behaviours). All species-specific classes are accommodated under the 
higher ExpoIndividual class which is a subclass of the EcoSim-class Individual. 
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5 Model Processes 
In this chapter the different processes in the Eco-SpaCE model will be described in more detail. 
First the concept of a model process will be described. If needed, the software implementation will 
subsequently be described. If the implementation of a process is merely the translation of a 
mathematical formula in C++ code, its software implementation will not be described explicitly. 

5.1 Time 

5.1.1 Conceptual model 

Time steps 
The time step is the time span over which we ignore details of temporal variation; instead, we consider 
only the net change in variables over the entire time step. Species exhibit different behaviours at 
different time scales. During a day they conduct behaviours, such as sleeping, eating, moving, mating, 
etc. The way they organise their day with different behaviours is called their daily activity pattern. 
Some species are nocturnal and hunt during the night, while others are diurnal. In a food web based 
model, it is important to take these activity patterns into account when modelling predator-prey 
interactions. A mouse sleeping in its hole is more difficult to catch than a rat foraging on the surface. 
A time step of one day is thus too coarse to adequately simulate predator-prey interactions. An time 
step of an hour seems more appropriate. It is a good balance between incorporating sufficient detail 
and a limited simulation time. 

Seasonality 
Species show different behaviour during different seasons of the year. For example, they have got 
breeding seasons. Or vegetation has different biomass available for consumption. This seasonality 
influences processes such as reproduction or food consumption. Therefore the virtual time steps are 
linked to a clock expressing time in hours, days, months and years. Animals can thus behave 
according to their seasonal habits. Individuals therefore need to have notion of the day of the year and 
of the time of the day. 

5.1.2 Software implementation 
Actions (or events) and schedules define an IBM’s model of time. They determine which behaviours 
of which objects are executed in which order, and define the IBM’s temporal resolution (Grimm and 
Railsback, 2005). In the EcoSim software these concepts are represented and implemented by event, 
schedulers in a so-called discrete event simulation approach.  
Processes taking place in real world systems are experienced as being continuous. Computers, on the 
other hand, are inherently discrete, so continuous behaviour is usually approximated. A continuous 
quantity such as time can be simulated using discrete equidistant increments - the smaller, the higher 
the accuracy. This is known as discrete time simulation (Iskra 2005). 
However, for many applications the continuous nature of real world systems is irrelevant, and can be 
represented by a short series of indivisible events. For example, a simple operation of movement can 
be simulated by just two events: the beginning and end of the movement. The simulation can thus 
optimise its operation by skipping the intermediate movement, since “nothing interesting” happens 
then. The model no longer proceeds in time steps but from event to event (Grimm and Railsback 
2005). This is known as discrete event simulation (Iskra 2005). 

Event 
To implement the dynamics of a model, EcoSim comprises some basic concepts of which events are 
an essential concept. Events in EcoSim are actions that make simulation objects carry out activities, 
called methods in C++, or change their state. Events consist of an object that takes notice of the event, 
a time stamp indicating the virtual time when the event will take place, and some action (local method 
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of the object) that will be performed after the event has taken place (Lorek and Sonnenschein 1999). 
Objects just specify which events will happen, who should know about the event, and how to react 
upon some event. All dynamic objects (e.g. individuals or the environment) are accommodated under 
class SimulationObject, so that they inherit the ability to generate and consume events.  The events 
that are scheduled for execution are handled by the so-called scheduler, the ‘engine’ of the simulation. 

Scheduler 
The simulation engine, implemented as the class Scheduler, deals with all the events being scheduled 
by simulation objects and is responsible for the activation of event methods. The simulation engine 
defines the global virtual time which equals the local virtual time of the latest event processed. The 
simulation engine stores all registered events in a so called priority queue. If a new event is registered 
it will be inserted into the priority queue according to its local virtual time. The simulation engine will 
always activate the first event from the priority after the last event is processed.  
EcoSim contains two different schedulers, which are subclasses of class Scheduler. 

No conflict Scheduler 
This scheduler can be used if no conflicts need to be recognized. This scheduler always removes the 
first event from the event list and activates the action stored in the event to be carried out. It will not be 
checked, whether there are more events in the event list that have the same time stamp. The sequence 
of object activations of events with the same time stamp, which are stored in a scheduler or in its 
priority queue, is not defined. In a simulation with multiple individuals, conflicts will certainly arise 
and this scheduler therefore seems inapt for the Eco-SpaCE model. 

Conflict Scheduler 
Simulation objects, placed in the scheduler for executing an action (i.e. registered with the scheduler), 
might want to change their behaviour, when others want to carry out the same behaviour (or 
something related) at the same time. For example, if a predator wants to kill a prey and the prey wants 
to flee at the same time, it becomes apparent that the order in which these conflicting events are 
executed is important and can have a significant influence on the results of the simulation. These 
conflicts must be resolved. The EcoSim platform therefore offers a so called conflict scheduler, which 
must be used if conflicts must be detected and resolved. Conflicting events, which occur when the 
same virtual time is specified for two or more events (two or more objects want to be scheduled at the 
same time), can either be handled in a predefined way by the simulation engine or through the 
programmer by installing a so called conflict resolve object (Lorek and Sonnenschein 1998). The 
difference with a scheduler that does not recognize conflicts lies in the way events are removed from 
the event list. This scheduler first of all removes all events with minimum time stamp. If there is just 
one event, there is no conflict, and the event can be activated. If there are several events, the scheduler 
passes the list of all events with the same time stamp to a ConflictResolver, which returns exactly one 
event that should be activated.  
The class ConflictResolver is the base class for all conflict resolvers. It is abstract and only defines an 
interface, which all derived conflict resolvers must adhere. A single conflict resolver is assigned to the 
scheduler. A ConflictResolver usually has just one function that can be called by a scheduler: the 
method resolveConflict(). As argument this function expects a list of events, in EcoSim called 
SimObjEvent. As a return value this function returns a pointer† to an event which will be executed by 
the scheduler. For the whereabouts of the remaining events, this class is also responsible. The 
remaining events can either be returned to the scheduler or deleted by the ConflictResolver.  So the 
resolver gets a list of SimulationObjects that want to execute an event as input and returns exactly one 
SimulationObject to be scheduled next. The event of this SimulationObject will be executed and 
removed from the event queue of the scheduler. 

                                                      
† A pointer is an identifier that holds the address of a core storage location of something of interest, as a data 
item, table, or subroutine 
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For two standard cases of conflict resolving EcoSim has already implemented solution strategies 
accordingly. They are modelled as the classes ConfResFIFO and ConfResRANDOM, two subclasses of 
class ConflictResolver.  These are presented below. 

Linear priority FIFO 
The class ConfResFIFO will always schedule the first task in the queue; it always returns the first 
event in the event list to the scheduler, and will register all other events unchanged in the scheduler 
again. This is according to the principle “first in - first out”. This is a form of fixed scheduling; actions 
occur in the same order each time step. 

RANDOMresolver 
The class ConfResRANDOM always selects one of the objects involved in the conflict, each with the 
same probability. From the list of events, the ConfResRANDOM thus returns a random event to the 
scheduler. It registers all other events again unchanged in the scheduler. This is called randomised 
scheduling and can be useful for avoiding artefacts of fixed scheduling (Grimm and Railsback 2005). 
 
For a realistic simulation, the conflict scheduler RANDOM resolver seems the most appropriate. The 
Eco-SpaCE model applies the randomised scheduling. 

Time with ecoDate 
The class ecoDate has been introduced to schedule events on a time scale expressed in hours, days, 
months and years of the (Gregorian) calendar. It defines the calendar time that corresponds to the 
virtual time in the computer simulation. The first virtual simulation step corresponds to a user defined 
date and hour or is set to the default (01 January 1970 at 01:00 hrs) and subsequent time steps 
increment the time with 1 hour. Time step thus get an ecological meaning and this “ecological clock” 
enables to simulate important ecological behaviours and phenomena such as species-specific daily 
activity patterns, breeding seasons, seasonal food availability, etc. In the class SimulationObject the 
methods simTime() and simDate() have been added to enable any simulation object, including all 
individuals to access the ecological time and date. 

5.2 Stochasticity 

5.2.1 Conceptual model 
A common use of stochasticity to induce variability is in creating the initial population of individuals 
at the start of the simulation. Statistical distributions for the individuals’ state variables can be 
specified and the model then uses these distributions to stochastically assign state variable values to 
the initial individuals. The Eco-SpaCE model employs such stochastic processes to simulate 
variability in input variables, such as weight, age, etc. 
Further, if the IBM’s rules are base on empirical information and there is sufficient data, it can be used 
to formulate probabilistic rules (Grimm and Railsback 2005). Behaviour in this case is not adaptive – 
the individual makes the same decision with the same probability no matter what condition it is in. For 
example, prey preference can be modelled probabilistic in order to mimic the observed food fraction in 
the diet, or the movement behaviour can be modelled by choosing from a probabilistic distribution a 
direction for a successive step. For these cases, several probabilistic distributions have to be 
formulated in the model’s code. 

5.2.2 Software implementation 
Several statistical distributions are available in EcoSim, among which Normal, Binomial, 
DiscreteUniform, Poisson, Uniform, and Geometric distribution. Depending on the distribution, only 
parameter values such as the mean value and the variance have to be specified as input. 
Two distributions have been added to the statistical library. A discrete normal distribution has been 
added, for example to determine the number of offspring. A wrapped Cauchy cumulative distribution 
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(WCD), a distribution used to model circular data, has been added for the correlated random walk 
algorithm to calculate the movement direction (see CRW for more details). 

5.3 Environment 

5.3.1 Conceptual model 
The environment is continuously changing; the biomass of the standing vegetation, for example, 
changes during the seasons. Animals also change their environment when they interact with it. During 
this interaction animals need information about their environment. However, avoiding unnecessary 
complexity and long simulation times most environmental characteristics are modelled as static in the 
Eco-SpaCE model. Only the plants and invertebrates living in the environment are changing through 
time. They are discussed in section 5.4.1. 
Animals need to gather information from their surrounding environment in order to adapt to the 
changing conditions. Therefore, they continuously sense their surroundings. Observations of animal 
behaviour show that they respond to their environment using a combination of experience and instinct 
(Robinson and Bolen, 1989). Methods have been implemented to access parts of the (surrounding) 
environment for retrieving the required information. 

5.3.2 Software implementation 
To facilitate easy access for gathering information about the environment, some algorithms have been 
introduced. An algorithm getRandomADWCell() has been added which returns a random Cell in the 
environment. And a more detailed algorithm getRandomSuitableCell(int Species) which returns a 
random suitable cell for a given species has been added and can be used to randomly place individuals 
in the study area. Algorithms for accessing cells in a hierarchical different topology have been added 
(getHigher() and getLowerCell()). For sensing their environment within a certain distance, e.g. within 
their home range, individuals can create a sensing distance sized cell around them. This facilitates an 
easy deduction of information. For example, they can know which other individuals are within this 
distance. 
An automated process of making a Home Range-cell for an individual has been implemented, 
createHRCell(ExpoIndividual*, ExpoCell*) and an additional algorithm to check one of the home 
range criteria, there must be sufficient suitable habitat within a home range, has been added, 
neighbourhoodSuffices(int x, int y, int Species, float threshold). 
Because the environment consists of cells and these cells are accommodated under the class 
SimulationObject, it is technically possible to change the environment dynamically by scheduling 
events to change the cell properties. However, this option has not been implemented in the Eco-SpaCE 
model, for reasons of efficiency. The environment consists of many cells in the case of the present 
study area and if these should be changed every day for example, this would require a significant 
amount of simulation time. It has therefore been chosen to, for example, get information about the 
seasonally changing standing biomass by calling a function that describes the relation between ecotope 
and date and returns the biomass of a certain species in the first level of the food web (see section 
Dynamics of level 1 organisms for further details). 

5.4 Dynamics of level I organisms 

5.4.1 Conceptual model 

Presence  
Presence of plants and invertebrates are based on the suitability of a habitat for a certain species. A so-
called habitat suitability index approach was followed; this approach assigns each model cell a value 
between zero (for unsuitable habitat) and one (for suitable habitat) (USFWS, 1996; Ray and Burgman, 
2006; Purucker et al., 2007). For vegetation and invertebrates, habitat suitability was derived from a 
map with ecotopes (i.e., spatial units that are assumed homogeneous with respect to vegetation 
structure, succession stage, and main abiotic factors relevant for plant growth) (Klijn and Udo de Haes 
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1994). This was done by assigning each ecotope type a suitability index of either zero (unsuitable) or 
one (suitable) based on expert knowledge and literature review.  

Growth 
The standing biomass of the plants and invertebrate species representing the first food web level varies 
throughout the different seasons of the year. Because these species serve as the food sources, and thus 
as the source of energy and of contaminants, for the higher food web levels, it is important to address 
their seasonal availability as food to predators. It is thus desirable that the dynamic supply of these 
food sources is modelled dynamically. 
The selection of a suitable way to model the dynamics of plants and invertebrates in the Eco-SpaCE 
model were based on four criteria. Firstly, the availability of the plant and invertebrate species should 
be cell specific. The Eco-SpaCE model’s environment is made up of grid cells. Keeping a food 
balance combining production and consumption and modelled for each cell individually will cost 
much CPU. So it seems better to model the availability per ecotope type. All cells within the same 
ecotope get the same species availability. Secondly, the time step for which species availability is 
calculated should be determined. The calculated availability depends on the period for which it is 
offered. The food per day will be less than the food per week. The time step for which the food supply 
is calculated should be synchronous with the time in which the animals consume the food. Animals 
consume food at a daily basis and thus the availability of food specie should also be calculated at a 
time step of one day. Thirdly, the dynamic modelling must describe seasonality in food supply. 
Some earlier models addressed the growth and availability of several plant species in different ways. 
Three models described the (re)growth using logistic functions. Logistic growth is based on the 
assumption that all food should be newly formed. New material also leads to faster growth. Logistic 
growth, for example is seen with colonies of microbes. Regrowth is based on the assumption that there 
is a quantity of non-edible base material which leads to a more or less constant regrowth. An example 
would be the stem, branches and roots of a tree. If the leaves are eaten, energy from the available 
material is mobilised to produce new leaves. The growth rate is constant and depending on the size of 
the stem, branches and roots. The model FORGRA of Jorritsma et al. (1999) describes the growth of 
herbaceous vegetation in forests as a function of light intensity. It is a logistic growth function. 
Turchin and Batzli (2001) and Owen-Smith (2004) described logistic growth and regrowth with the 
following functions: 
 

K
VK

uV
dt
dV -

=   (Logistic growth)     (1) 

K
VK

U
dt
dV -

=   (Regrowth)      (2) 

 
where V is the biomass, u is the rate of growth at V at near zero, and K is the maximum biomass in the 
absence of predation. U is the initial regrowth rate (at V near 0). They incorporated seasonal 
dependence by making the parameters u and U dependent on the season. 
On the basis of empirical (historical) information on fruit production and climate (temperature, snow, 
hydrothermal ratio, sun intensity, etc.), Selås (2006) developed a multiple linear regression model. 
This regression model describes the variation in fruit production as a function of climate. For such an 
exercise, empirical data are therefore required from the same or similar area. Satake & Bjørnstad 
(2004) described a resource-based model that describes seed production as a function of energy input. 
Reuter (2001) used a cyclic function to describe the seasonal variation in food supply. He therefore 
employed a periodic sine function. 
At this stage keeping a food balance is infeasible, which make all differential equations unsuitable for 
use in the Eco-SpaCE model. After all, the differential equations by definition use the food available at 
time t to calculate the food supply at time t+1. That applies for the logistic growth function, the 
regrowth function, resource-based modelling and logistic growth under the influence of light. In effect 
this means that you choose not to model the processes mechanistically (for example, by means of 
positive feedback and feedback processes) but to model them descriptive. You go in search of a 
mathematical function that best describes the function that you observe or expect in the field, without 
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explaining the observed patterns. There are then two options, namely a multi linear regression model 
or a cyclical function as uses Reuter. A specific regression model for ADW is not feasible because the 
necessary time sequences are missing. Therefore a cyclic function describing the seasonal variation in 
food supply will be implemented in the Eco-SpaCE model. 
The growth dynamics of plant and invertebrate species are defined as an external driving force. 
Growth is not included explicitly as a process in the model; rather, the resulting availability of a 
species is implemented as a function of the season and of the ecotope, to account for temporal and 
spatial variability, respectively. 
  

Resource availability of a species = f(species, ecotope, season) 
 
Season will be expressed as month (1-12) or more detailed day of the year (1-365; combination of 
month and day). The ecotopes are all the ecotopes present in the study area (1-30). The species are the 
species of the 1st food web level, such as earthworms, grass, spiders, etc. 
The biomass of the plants and invertebrates serves as the resource that is available to the higher food 
web level species in seasonal fluctuations. The standing biomass is simulated with a combination of 
two sine functions, one the growth phase, which mimics the growth of the standing biomass from 
minimum to maximum biomass and another for the decline phase, simulating the seasonal dies off of 
the biomass (Figure 7). Die off of biomass of plant and invertebrates species caused by predation is 
not simulated explicitly; it is assumed that this is included in the function simulating seasonal biomass 
variation. 
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Figure 7: Schematic graph of sine function describing the seasonal resource availability, with input 
parameters minimum and maximum biomass, begin and end growth, and begin and end decline. 
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and for the biomass at time t during decline phase = 
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where Bmin is the minimum biomass, Bmax is the maximum biomass, Gstart is the date the biomass starts 
to grow, Gend is the date the biomass growth ends, Dstart is the date the biomass starts to decline, and 
Dend is the date the biomass decline ends. 

Metal accumulation 
The calculation of the internal contaminant concentration in the species depends on whether it 
concerns species of the second food web level (i.e. small mammals consumed by top-predators) or the 
first food web level (i.e. plants and invertebrates consumed by small mammals or top-predators). For 
the plants and invertebrates, the internal contaminant concentration can be derived directly from soil 
concentrations, by applying bioaccumulation factors (BAFs), according to equation 5, or log-linear 
regression equations relating the contaminant concentration in the soil to the internal concentration in 
the accumulating species, according to equation 6: 
 
 , , (1 ),  ori j i soil MCIC C BAF× -= ×        (5)

 
 

 , , (1 ),b
i j i soilIC a C MC= × × -        (6)  

 
where Ci,soil is the contaminant concentration in soil in cell i in mg·kg-1 dw, BAF is the 
bioaccumulation factor (dimensionless), MC is the moisture content of the accumulating species 
(dimensionless), and a and b are regression coefficients (dimensionless). 

5.4.2 Software implementation 
First food web level organism individuals are not represented as objects, so it is not possible to simply 
query a certain state, such as available biomass or internal contaminant concentration, of an individual 
from this food web level. Rather, if a predator wants to obtain the state of a level 1 prey species, it 
calls a corresponding function that calculates the state during runtime, by retrieving parameter values 
from databases stored in the program and making the necessary calculations. 

Seasonal availability of level 1 organisms 
The biomass parameters (minimum and maximum biomass, begin and end of growth and decline) 
specific for each ecotope and each first food web level are stored in a struct data structure 
accommodated in the map structure that represents the ecotope-species matrix. 
The function that returns the amount of biomass of a level 1 organism that is seasonally available has 
two input parameters, namely prey species and the cell for which to calculate the availability. The 
season is implicitly obtained within the function and thus does not have to be passed on as a 
parameter. 

Metal accumulation 
Parameters for accumulation of different contaminants are read from separate input files for each 
contaminant, and are stored in two structs (ContaminantsFacts and PreyFacts), which are 
accommodated in the class ExpoIndividual. 

5.5 Dynamics of level II and III organisms 
Individuals of the second and third levels of the food web (small mammals and top predators, 
respectively) are represented as objects (instances of their corresponding species class), which have 
certain state variables (weight, age, development stage, etc.) and possess a variety of methods that 
carry out specific behaviours to change their states. Figure 8 shows a schematic overview of a 
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vertebrate object, with its state variables and methods and its relation with other actors. By the means 
of their behaviours animals become adaptive creatures. They are able, for example, to adapt to their 
changing environment by moving. Or they can change their behaviour by foraging when hungry, or by 
reproducing when adult and in breeding season, etc. In the following section the principle dynamics of 
these species group will be described. 
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Figure 8: Schematic representation of a vertebrate modelled as an object with states (age, weight, 
energy, internal contaminant concentration) and behaviours (movement, food intake, reproduction, 
mortality) and its relation with other actors 

5.5.1 Aging 

Conceptual model 
Age is updated every day, for all animals that are still living. They will grow until they have reached 
their maximum age, unless some other stressors, such as predation or starvation, cause them to die 
earlier. 
During their lifetime individuals go through different development stages. Individuals can transfer to a 
succeeding development stage when they reach certain ages (or certain weights). During each 
development stage, individuals carry out different behaviours. For example, individuals can only 
reproduce during the adult stage. Or they start foraging (independently from their mother) when they 
reach the juvenile stage. 

Software implementation 
At the end of the day all individuals are scheduled to update their age with one day. In the meantime 
they will update their daily foraging history: the model calls the methods consume() and accumulate() 
to calculate how much energy an individual assimilated during the day and how much chemical 
stressors it accumulated. 

5.5.2 Growth (& energy balance) 

Conceptual model 
An individual grows during their simulated lifetime, by gaining or losing weight. Whether it gains or 
loses weight depends on the amount of energy it can gather during a day. It can obtain this energy 
from the food it eats during foraging.  
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Dynamic Energy Budget 
In order to implement growth in the model, a dynamic energy budget (DEB) has been developed. 
The dynamic energy budget has been set up conform the following criteria: 
1. Somatic growth (i.e. increase in body tissue) should be ecologically realistic.  
2. Starvation should be an emergent property 
 
To meet the first criterion, somatic growth should approximate optimal growth curve. The Von 
Bertalanffy growth equation fitted mammalian growth curves best, together with Gompertz growth 
equation (Zullinger et al., 1984). To meet the second criterion, weight increase and decrease should 
also be modelled as an emergent property. This can be achieved by directly coupling it to food intake. 
In this way, the importance of starvation can be quantified in relation to other stressors. 
 
The major potential components of daily energy expenditure are expenditures associated with (1) 
standard or basal metabolism, (2) assimilation of nutrients (specific dynamic effect or calorigenic 
effect of food; Kleiber 1975), (3) thermoregulation, (4) production (growth, storage, reproduction), 
and (5) activity (Kasarov 1992). The first three components can be classified as maintenance. 
Production or growth can be subdivided into somatic growth (or production of new tissue) and 
reproduction. 

Maintenance 
The energy expenditure for maintenance and average normal daily activity is modelled as the field 
metabolic rate (FMR). FMR includes the costs of basal metabolism (BMR), thermoregulation, 
locomotion, feeding, predator avoidance, alertness, posture, digestion and food detoxification, 
reproduction and growth, and other expenses, that ultimately appear as heat, as well as any savings 
resulting from hypothermia (Nagy, 1987). FMR is quantified for all the species using allometric 
relations derived by Nagy (1987, 1999), who based the estimates on doubly labelled water 
measurements of CO2 production in free-living animals. FMR is assumed to equal the energy 
requirement for maintenance and basic activities and is weight dependent according to the species-
specific allometric relations. Growth is not assumed to be included, because FMR values were 
primarily based on adult individuals. Reproduction is also assumed not to be included (see Section 
Reproduction). The formula for the energy required for maintenance (including average daily 
activities; Emaintenance) will then be: 

 
FMRb

FMRenancema maFMRE ×==int       (7) 

 
where FMR is the field metabolic rate (KJ·day-1), m is the weight of an individual (g) and aFMR and 
bFMR are species-specific parameter values for the field metabolic rate. 

Growth 
Growth consists of two categories, namely production of new tissue (somatic growth) and production 
of offspring (reproduction). They will be described separately in the following section. 

Somatic growth 
Weight increase at time t is modelled as: 
 

ttt growth somaticweightweight +=+1      (8) 

 
West et al. (2001) developed a general model for ontogenetic‡ (or somatic§) growth based on 
biological mechanism (equation 9). It is a quantitative model based on fundamental principles (Brown 
and West 2000, West et al. 1997, 1999) for the allocation of metabolic energy between maintenance of 

                                                      
‡ Ontogenetic development is the development of an organism from the fertilized egg to its mature form. 
§ Somatic growth is growth of cells forming the body of an organism. 
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existing tissue and the production of new biomass. The imbalance between supply and demand 
ultimately limits growth. 
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where m = weight of individual (g), M = adult weight (g), 4
1

Mka ××= 4  (derived by combining 
formulas from West et al. 2001 and Bertalanffy 1951), k = postnatal growth rate constant (day-1). 
From equation 9 we can derive a formula (equation 10) for the daily energy required for growth 
(Egrowth; KJ·day-1), if we know the energy cost to produce 1 gram of new tissue (ECtissue; KJ·g-1). 
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where the calorific value of tissue (ECtissue) is calculated by the summation of the calorific value of fat 
tissue and the calorific value of protein tissue relative to their percentile fraction of the body weight. 
Although the weight percentages of fat tissue and protein tissue in the whole body slightly change in 
growing individuals, they are assumed static at 11% (average of values for mammals reported by Pace 
and Rathbun 1945) and 15% (deduced from data presented by Robbins (1993) for lemming, vole and 
mice species), respectively. The anhydrous body fat and protein for fat tissue is average 9.11 kcal·g-1 
or 38.1 KJ·g-1 and 5.42 kcal·g-1or 22.7 KJ·g-1, respectively, in wild birds and mammals (Odum et al. 
1965, Baker et al. 1968, Sawicka-Kapusta 1968, Barrett 1969, Ewing et al. 1970, Johnston 1970, 
Pucek 1973, Fedyk 1974, Robbins et al. 1974, Kaufman and Kaufman 1975, Stirling and McEwan 
1975, Clay et al. 1979). 
 
In order to grow following the ideal species-specific growth curve, the daily required (and therefore 
desired) energy intake (Erequirement; KJ·day-1) at weight m would include energy for maintenance and for 
growth (and additionally, for breeding animals an extra amount of energy for reproduction, Ereproduction; 
KJ·day-1): 

  
( )onreproductigrowthemaintenanctrequiremen EEEE ++=    (11) 

Food intake 
When an individual wants to grow according to its ideal growth curve, its daily energy intake (DEI; 
KJ·day-1) multiplied by the assimilation efficiency of energy from food (AE; %) should equal its 
required energy intake at weight m. Assuming a priority of energy to maintenance, the portion of 
energy devoted to somatic growth equals to: 
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For each species AE is calculated from predator-prey specific assimilation efficiencies assuming an 
average diet composition using data from the literature. The actual daily energy intake, ideally equal to 
the daily energy requirement (Erequirement), is confined by energy available from food gathered 
(Eavailability; KJ·day-1) and the species-specific maximum daily intake rate (DEImax; KJ·day-1). DEImax is 
calculated using an allometric relation between the weight of the species and the maximum 
metabolisable energy intake, derived by Kirkwood (1983). 

 
bmaDEI ×=max         (13) 
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where m = weight of individual (g), a = 11.84 and b = 0.72 (Kirkwood 1983). 

Reproduction allocation 
The allometric relations between body weight and the FMR, used to derive the FMR values for the 
ADW species, are average values. But animals often have different metabolic rates at different times 
of the year and metabolic rates are known to be significantly higher during the breeding season, when 
adults breed and raise their offspring. After maturation, reproduction is assumed to be fuelled by 
metabolic scope where metabolic rate is increased several fold above the resting level to fuel activities 
related to reproduction (Peters, 1983). For example, Masman et al. (1986) showed that for the 
common kestrel, females had the highest energy intake during egg-laying (an elevation of 35% above 
the winter level), and the males reached a maximum in the nestling phase (52% above winter level). 
Reproduction is thus not explicitly included in the FMR. Therefore FMR will be increased when 
reproduction plays a role. The FMR (and consequently also the daily energy requirement) will be 
increased by a species-specific fixed percentage (e.g. 35-52% for the kestrel).  

Software implementation 

Energy transfer between prey-predator and weight update 
The equations describing the dynamic energy budget have been implemented in the program code. An 
individual can consume food during the whole foraging period of the day. If a prey is eaten the amount 
of energy of the prey is calculated from its biomass and its caloric value and the part that is 
metabolisable is then transferred to the predator. Only at the end of the day the energy balance is 
calculated and from the energy level consumed that day the weight of the individual is also updated 
every day. Finally, the energy consumed is set to zero again for the next day of foraging. The dynamic 
energy budget is thus calculated at a time step of one day. 

5.5.3 Accumulation 
Chemical stress from contaminants, such as heavy metals, is one of the stressors modelled in Eco-
SpaCE. In principle, the same relations will be used as in the spatially explicit exposure model 
developed in the Visual Basic® development system Application (Loos et al. 2006). Basically, only the 
time resolution at which the accumulation is calculated differs from the preceding model. Here, the 
basic principles will be discussed briefly; please refer to Loos et al. (2006, 2008) and Schipper et al. 
(2008) for more details. 
The internal contaminant concentration of a small mammal consumed by a top predator is calculated 
according to a more mechanistic approach. Like energy levels and weight, internal levels of 
contamination are updated every day. Small mammals and top predators predominantly accumulate 
metals via ingestion of food (Hunter et al., 1989). The internal contaminant levels are therefore 
calculated from the food eaten that day. The average concentration in food is calculated and daily 
absorption and excretion rates are applied to determine the daily uptake. 
Contaminant concentration in food is characterised a summation of the internal contaminant 
concentrations of all the preys, relative to their diet fractions, eaten in one day: 
 

 ×=
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,       (14) 

 
where Cfood is the dietary contaminant concentration in mg�kg-1 fresh weight food, ICprey is the internal 
contaminant concentration in prey item in mg�kg-1 fw food, and fprey is the dietary fraction of prey item 
(dimensionless). The fraction of prey in diet is an emerging property, depending on which preys are 
available to the predator at its location, which small mammal preys a top predator will encounter and 
the preference for certain preys. 
The contaminant uptake rate (Rin) of a small mammal is described as a function of its feeding rate 
(FR), its contaminant absorption efficiency (kin), and the contaminant concentration in its diet (Cfood): 
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BW
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where R,in is contaminant uptake rate of the diet in mg·kg-1 fw body weight day-1, FR is the feeding rate 
of the predator in g fw food g-1 fw body weight day-1, kin is the absorption efficiency of the 
contaminant (dimensionless), Cfood is the dietary contaminant concentration in mg·kg-1 fw food, DFI is 
the daily food intake in g fw day-1, and BW is the body weight in g fw. The elimination rate (Rout) is a 
function of the elimination rate (kout) of the organism and the individual’s internal contaminant 
concentration (IC), and is given by: 
 

predatoroutout ICkR ×= ,        (16) 

 
where Rout is the contaminant elimination rate in mg·kg-1 fw body weight day-1, kout is the elimination 
rate constant in day-1, and ICpredator is the internal contaminant concentration in the predator in mg·kg-1 
fw body weight . The uptake from the concentration in food is a balance between assimilation and 
excretion of the contaminant by the predator. Thus, the change of the internal contaminant 
concentration in time is calculated by the difference between uptake rate and elimination rate: 
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where t is the time in days. 
The internal concentration of the predator, modelled as a receptor, is calculated each day, using the 
following discrete formula: 
 

11 -- ×-××+= toutfoodintt ICkCkFRICIC ,     (18) 

 
where ICt is the internal concentration of the predator at day t in mg·kg-1 fw body weight, Cfood is the 
concentration in the food eaten by the receptor at day t in mg·kg-1 fw food, and ICt-1 is the internal 
concentration of the predator at the previous day in mg·kg-1 fw body weight. Equation 18 is applicable 
to non-essential metals (such as cadmium). For essential metals (such as zinc) the same function can 
be used, were it that the parameters for the bioaccumulation kinetics (kin and kout) are dependent on the 
contaminant concentration in the food (Loos et al. 2008). 
Contamination flow from mother to juvenile is not yet determined. 

5.5.4 Mortality 
Mortality is caused by four principle factors, namely starvation (energetic stress), toxicant exposure 
above threshold value (chemical stress), predation and aging. 

Starvation 
In 1684, Redi (1684) observed that during starvation large animals survived longer than small ones. 
This was probably the first evidence that a biological duration, survival time during starvation, was 
mass dependent. Redi’s observations were confirmed in 1820 by Naumann (1820), in 1828 by Collard 
Martigny (1828), and in 1843 by Chossat (1843). The law of Chossat (1843, in Kleiber, 1961) states 
that animals which are starving catabolise about half of their body weight and then die. In other words, 
death occurs in starving individuals when body mass approaches 50% of the initial, unstarved mass.  
Adams (1999) clarifies the 50% rule as the point at which a starved fish depletes the usable portion of 
its body energy (mainly triglycerides), leaving only phospholipids, protein and small amounts of 
carbohydrates. Starvation-induces mortality likely occurs once all triglycerides have been exhausted 
(as well as any proteins and carbohydrates) and fish begin to use phospholipids as an energy resource 
(Adams 1999). This is because the breakdown of cell membranes, which are comprised of 
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phospholipids, has severe biochemical and physiological consequences. Wetzel (1925) found a 
maximum relative weight loss of 51.5 ± 0.613 % for pigeons subsisting on water alone. The law of 
Chossat (Kleiber, 1961) will be applied in the Eco-SpaCE model to determine whether starvation 
occurs. 

Toxic exposure above PNEC 
To incorporate interindividual differences, for every individual its lethal concentration for a certain 
contaminant is determined, ranging between the Predicted No Effect Concentration (PNEC) and the 
Lethal Concentration for 100% of the individuals (LC100), following an appropriate probability 
distribution, e.g. lognormal. At this stage the interindividual differences are, however, not linked to 
their physical conditions. For every modelled contaminant, the Predicted Exposure Concentrations 
(PECs) are compared with the determined individual lethal concentration. If the PEC rises above this 
value, it dies and will be deleted from the simulation. The cause of death will be set to “toxication”.  
So, at environmental concentrations below the PNEC no individual dies and at concentrations above 
the LC100 all individuals will die.  

Predation 
Death caused by predation only applies to the second level of the food web (i.e. the small mammals). 
Within the food web modelled, the species of level three (top predators) are not preyed upon. 
However, badgers and weasels are sometimes known to eat young birds. Therefore, juveniles of the 
bird species might in the future be included as prey species.  
Predation is modelled as an emergent property, depending on encounter and on prey preference. 
Therefore, death caused by predation is also an emergent property. If a prey species is caught by a 
predator, the specified object, representing the caught prey item, will be deleted from the simulation. 
For more details on predator-prey relations see section 5.5.6. 

Aging 
Species-specific maximum recorded ages have been gathered from literature. These will be used as 
absolute maximum and individuals will die if they reach this age. 

5.5.5 Movement (organism-environment interaction) 

Conceptual model 

Habitat quality 
Movement is the fundamental method by which mobile animals respond to changing environmental 
and competitive conditions. Spatially explicit individual-based models (IBMs) use movement rules to 
determine when an animal departs its current location and to determine its movement destination. 
These rules generally compare locations using some measure of an individual’s expected fitness. 
Giving an individual simple fitness-maximizing decisions rules, and the information about its 
environment necessary to predict decision outcomes, can cause many realistic behaviours to emerge 
naturally (Railsback 2001, Railsback et al. 1999). 
As a fitness-maximizing rule, the Eco-SpaCE model assumes that an individual will tend to visit 
habitat with greater suitability more often than less suitable habitat to increase its chance of finding 
food and/or shelter. Therefore the suitability of the habitat needs to be known for every species 
modelled. 
The habitat suitability index approach is used, which is similar to the approach used to determine the 
presence of plant and invertebrate species. It relates measurable environmental variables (vegetation 
type) to the suitability of a site for a species by assigning each ecotope a value between 0 for 
unsuitable habitat and 1 for suitable habitat (USFWS, 1996; Ray and Burgman, 2006; Purucker et al., 
2007). For all predator species (level 2 and 3 of the food web modelled), the habitat suitability of a cell 
was assumed to depend not only on ecotope suitability (0 = unsuitable, 0.5 = marginal, and 1 = 
suitable) but also on the availability of food (equation 19). Food availability for a specific species was 
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derived from the cell-specific habitat suitability indices for its respective diet items, whereby the 
habitat suitability index of each diet item was weighted according to its contribution to the receptor 
species’ diet (equation 20) 
 

iii FAESHS ×=         (19) 

)( ijji HSfFA ×=         (20)  

 
where HSi = habitat suitability of cell i (dimensionless), ESi = ecotope suitability of cell i 
(dimensionless), FAi = food availability in cell i (dimensionless), fj = dietary fraction of diet item j 
(dimensionless), and HSij = habitat suitability of cell i for diet item j (dimensionless). The resulting 
species-specific habitat quality is used for defining the individual’s movement through the landscape. 
Given a certain habitat quality at the (surrounding) location of an individual, rules defined in 
movement algorithms determine how and where the individual moves to. 

Movement algorithm 
Criteria used to develop and implement movement algorithms in the Eco-SpaCE model were twofold. 
First, it should be relatively efficient in terms of computer processing (fast simulation). Secondly, it 
should contain some level of realism; ideally, it should closely mimic the movement patterns and/or 
spatial pattern use observed in the field of the species in question. 
Several movement algorithms have been defined and can potentially be applied to all the mobile 
species in the Eco-SpaCE model. The current movement algorithms include Biased Random Walk, 
Correlated Random Walk (CRW), Random Flight within Home Range, movement to a random cell in 
random neighbouring cell of a hierarchal higher level. 

Biased Random Walk 
A random walk model is a formalization of the intuitive idea of taking successive steps, each in a 
random direction. Thus, they are simple stochastic processes consisting of a discrete sequence of 
displacement events (i.e., move lengths) separated by successive reorientation events (i.e., turning 
angles). The statistical distribution of displacement lengths on the one hand, and the statistical 
distribution of changes of direction (i.e., turning angles) on the other hand, describe the stochastic 
process (Bartumeus, 2005). The simplicity of pure random walks is methodologically attractive 
(Kareiva, 1990), but such search strategies result in redundant paths (Bovet and Benhamou, 1988) and 
may not be applicable to behaviourally sophisticated animals (see, e.g. Turner et al., 1993). To make 
the movement pattern more realistic the pure random walk can be changed in so-called biased random 
walk. Again the direction of a successive step is randomly chosen but with a bias towards more 
suitable habitat. 

Correlated Random Walk and Lévy Flights 
Many simulations use correlated random walks (CRW) to reduce the redundancies of pure random 
walks and simulate more realistic movements (e.g., Hoffman 1983, Cain 1985, Haefner and Crist 
1994, Schippers et al. 1996, Schumaker 1996) and they have been adjusted successfully to a wide 
range of empirical data (Kareiva and Shigesada 1983, Bovet & Benhamou 1988, Turchin 1991, Crist 
et al. 1992, Johnson et al. 1992, Bergman et al. 2000). While methods to quantify space use, such as 
correlated random walk (CRW) models, have become almost standard in invertebrate studies (Root 
and Kareiva, 1984; McCulloch and Cain, 1989), only recently have they been applied to large 
mammals (Bergman et al., 2000; Fortin et al., 2005). One study was able to explain individual 
variation of grey seals (Halichoerus grypus) with CRW-based models (Austin et al., 2004), 
demonstrating that spatial concepts developed in other taxonomic groups, such as invertebrates, can be 
successfully applied to carnivore studies. 
Other simulations use Lévy flights (LF; Viswanathan et. al. 1996, Levandowsky et al. 1997, Atkinson 
et al. 2002, Bartumeus et al. 2003, Ramos-Fernández et al. 2004). Recent works have fitted field data 
of specific species (Mårell et al., 2002; Austin et al., 2004) by using both models. All these studies 
have shown that CRWs and LFs can be used as fitting procedures to analyze animal movement. 
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A correlated random walk functions like a random walk, but the turning angles between successive 
moves are not statistically independent, resulting in a straighter movement path (Johnson et al., 1992). 
CRW models control directional persistence (i.e. the degree of correlation in the random walk) via the 
probability distribution of turning angles by changing the shape parameter of the distribution applied 
(� ). Often the wrapped Cauchy distribution (Batschelet, 1981; Haefner and Crist, 1994) is used as the 
probability distribution. In the Eco-SpaCE model, in simulations for CRWs, for each new step of 
movement the turning angles (i.e., deviations from the previous direction) are selected from a wrapped 
Cauchy Distribution (WCD) (Batschelet, 1981; Haefner and Crist, 1994). The WCD distribution is 
sampled by using the inversion method, i.e., turning angle deviations are generated from the WCD by 
inserting a uniform random variable, 0 < u < 1, into the inverse of the cumulative distribution function. 
So, the angle deviation �  from a preferred direction f is obtained from  
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In the calculations f = 0 is set, so the WCD accounts for the tendency, observed in many organisms, 
to go straight forward. �  is the shape parameter of the WCD, which controls sinuosity, and to that 
extent, diffusiveness. The relative straightness of the CRW can be changed by varying the shape 
parameter � . For �  = 0 we obtain a uniform distribution with no correlation between successive steps, 
thus Brownian motion emerges. For �  = 1 we get a delta distribution at 0o leading to straight-line 
searches. The length of the step in a CRW is normally fixed. 
One can also use movement algorithms that vary successive movement lengths by drawing them from 
a distribution (e.g. lognormal; Schtickzelle et al. 2007). Lévy flights models simulate movement by 
varying the move lengths (i.e. the so-called flights). In this case, the turning angles are selected from 
uniform distribution and move lengths (flight) from power-law distribution P(lj)� l j

-�  (Viswanathan et 
al., 1999). The exponent of the power-law is called the Lévy index (1 < �  �  3) and controls the range 
of correlations in the movement. LF thus comprises a rich variety of paths ranging from Brownian 
motion (�  �  3) to straight-line paths (� � 1). The length of the successive step is calculated by inserting 
a uniform random variable, 0 < u < 1 into 
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where lmin = the minimum length of the step, �  = the power-law exponent or Lévy index 
Lévy flights (LFs) are more efficient than correlated random walks (CRWs) in searching targets. As 
density of targets diminishes, LFs become even more efficient than CRWs (Bartumeus, 2005). 
There is a small side mark to the Lévy flight, however, because it has to be limited by a maximum 
distance as well. Within a fixed time step, an individual would be capable of travelling only a limited 
species-specific distance, whereas the outcome of the equation for the Lévy flight (equation 18) ranges 
from lmin�  � . 
Both the CRW and the LF movement algorithms can be set dependent of the habitat suitability, so to 
give individuals the adaptive trait of visiting suitable habitat more frequently than less suitable habitat, 
this in turn to maximise their fitness. In the CRW algorithm, if the shape parameter �  is set closer to 1 
for less suitable habitat and closer to 0 for suitable habitat, an individual will tend to move straighter in 
less suitable habitat, enabling it to eventually escape this habitat, and it will tend to turn a lot in 
suitable habitat, leading to a small displacement, mimicking it to stay in this habitat. Parallel, in the LF 
algorithm, for example, giving an individual the tendency to escape from less suitable habitat, can be 
achieved by a rule such as “the lower the habitat quality, the higher the probability for longer 
movement lengths”. Further, combinations of the two movement approaches are also imaginable. 

Random Flight 
Random flight refers to an algorithm implemented specially for birds. It assumes that with every next 
foraging step any cell within a certain range (e.g. home range) can be reached, without interaction with 
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the in between laying environment. Any suitable cell within the specified range is selected 
successively, either with every (suitable) cell having an equal change (random) or where more suitable 
cells have higher changes of being selected next (random biased). 

Starting cell 

Initiation 
At the beginning of the simulation, before the initial individuals start to move, they need to be placed 
in the simulated study area. They are placed in so-called starting cells, from where they begin to 
forage when the simulation is activated.  These starting cells can be chosen using the following 
options: 
1. A cell with coordinates (x,y) 
2. A cell randomly chosen within the study area 
3. A cell randomly chosen within habitat suitable for the species of concern 
4. A cell randomly chosen within suitable habitat and containing enough suitable habitat within the 

surrounding area that covers the size of the home range specific to the species 
 
For certain simulation scenarios, placing individuals in specific predefined cells (with known 
coordinates), the first option might be useful. However, when simulating a possible realistic scenario, 
the fourth option seems the most realistic option. This option is therefore implemented as the default 
option. 

Offspring 
For placing new individuals, offspring that are born during the simulation, one can apply the same 
options mentioned above. It seems commonsensical that the starting cell of an individual should be the 
same as the cell its mother was in at the time of birth. This can easily be implemented by choosing 
option 1 (the coordinates of the mother are known). However, if there is too many offspring born in a 
small area, the density could increase to unrealistic high levels. In real life, these offspring would then 
be forced to disperse to less densely inhabited areas. Dispersion has not yet been implemented and 
therefore, like the initial individuals, the default option for new individuals is currently set to option 4.  

Home range 
After an individual has found a starting cell, it creates a home range around this position. The 
succeeding movements of this individual are then confined to this home range. This can either be 
achieved by a strict boundary (bouncing) or by a bias toward the centre of the home range. In 
combination with a Correlated Random Walk (CRW) the latter option is called a centrally biased 
CRW. The strict boundary option is imposed behaviour, whereas from the centrally biased CRW a 
behaviour emerges that will make an individual stay within its home range. In the current version of 
the model, a strict boundary is implemented and applied. Besides the use of the home range for 
confining the possible movements, it can also be used for determining the sensing distance (see section 
Sensing) and interactions with other individuals. 

Sensing 
In order to respond to the changing conditions they have to be able to sense their environment. 
Specifying the distances over which individuals can sense can be one of the most important factors in 
an IBM’s design. Underestimating this distance can severely and unrealistically limit the ability of 
individuals to adapt (Grimm and Railsback, 2005). 
To specify the distances over which the ADW species can sense, study results from Swihart et al. 
(1988), who related body size to the rate of home range use in mammals, were consulted. Swihart et 
al. (1988) calculated the time required to traverse a home range during the course of normal 
movements (TTI; time of independence) for 23 species of mammals ranging in body mass from 30g to 
70 kg. TTI represented the time interval at which an animal’s current position was influenced only by 
its pattern of home range use, not by its position � t minutes earlier. Thus, TTI was the minimum time 
interval over which an animal could occur, in a probabilistic sense, anywhere in its home range. For all 
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species, movements were monitored either by radiotelemetry or direct observation. Observations were 
collected only during periods of activity. A distinction was made between croppers if they were 
primarily herbivorous (grazers, browsers) and hunters if they relied primarily upon foods such as 
seeds, fruits, or mobile prey, after McNab (1963). Species also were categorized as central place 
foragers (CPF) or non-central place foragers (non CPF). 
The relation between body mass of hunters and rate of home range use, TTI = 195M0.49, was 
significant (R2 = 0.79, P < 0.001). For all non-central place forager species, regardless of diet, TTI = 
354M0.22 (R2 = 0.50, P < 0.01). If we calculate the TTI, calculated in hours, for the ADW species, we 
get the following values (Table 3): 
 
Table 3: Home range use calculated for ADW species 
Species group Body Mass (kg) Home Range (ha) TTI (hour)
Microtus arvalis non-CPF cropper 0.018 0.02 2.4
Sorex araneus hunter 0.008 0.05 0.2
Clethrionomys glareolus hunter 0.018 0.15 0.3
Talpa europaea hunter 0.095 0.21 0.8
Apodemus sylvaticus hunter 0.016 0.22 0.3
Oryctolagus cuniculus non-CPF cropper 1.732 3.11 6.7
Mustela nivalis hunter 0.077 14.70 0.7
Meles meles hunter 10.010 74.83 7.7  
 
Within one day (i.e. the time the individual forages to catch and consume its preys) assuming a 
foraging period of maximal 8 hours per day, all species can potentially visit their whole home range 
according to Table 1. Therefore, the sensing range of the foraging animals is set at size of the home 
range. However this only applies to sensing other mobile preys. The presence and biomass of the plant 
and invertebrate species are defined at the resolution of the cell size and they can thus only be sensed 
at the cell size level. 

Software implementation 

Presence & Habitat Quality 
For easy and logical extraction of the relational information, the ecotope-species matrix, containing 
information about the suitability of each ecotope for every species modelled, has been stored in the 
container class map, a data structure available in the Standard Template Library (STL; C++ library). 

Walk algorithms 
A basic movement step is executed by calling the function moveToCell() with the destination cell as 
input parameter. For a pure random walk, neighbouring cells can be accessed by the method 
getNeighbourCell() with the current cell and one of the eight wind directions as input parameters.  
Several more complex movement algorithms have been defined in the class ExpoIndividual, and are 
thus available to all its subclasses, i.e. to all small mammals and top predators, represented as mobile 
organisms. The Random Walk, the Correlated Random Walk (CRW), the Lévy Flight (LF), and the 
Random Flight (within the home range) algorithms are called with moveRND(), moveCRW(), 
moveLF(), and moveRndInSuitHR(), respectively. The algorithm for the (towards suitable habitat) 
biased random walk is computationally not the most efficient, because each movement step all eight 
surrounding cell (possible next destinations) need to be analysed for habitat suitability. The CRW and 
LF algorithms are more efficient, because they only have to get the habitat suitability of the cell the 
individual is residing in to derive the movement of the successive step. Because of its better efficiency 
and the fact that they have been successfully adjusted to empirical data, the Correlated Random Walk 
movement algorithm is set as the default for the mammalian species. For the bird species the Random 
Flight movement algorithm is set as the default for movement. 

Starting cell 
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When initialising a new individual in the simulation, its starting position (any cell containing suitable 
habitat and having enough habitat in the surrounding home range area) can be obtained by calling the 
default getRNDSuitableCell() with the initialising type of species as input parameter. 

Home range 
A home range of an animal is defined as a single large ExpoCell object on a higher hierarchy in the 
topology, which contains all those ExpoCell objects of the lowest hierarchy (basic cells) that fall 
within the area defined by the home range around its starting position. All these basic cells are defined 
is being INNER (see section Topology) of the home range cell and the home range cell is defined as 
OUTER of these basic cells. 
The implementation of the home range defined as a hierarchal higher cell in the topology enables the 
animal-object to efficiently “sense” its home range; it can easily obtain information about other 
animals within this area, because al the individuals that are in the lower cells that lie within the home 
range area are automatically contained in the home range cell. Thus, an individual does not have to 
search in all the cells that lie within its home range; it suffices to search in the home range cell. 
 

5.5.6 Foraging (organism-organism interaction) 

Conceptual implementation 
The only explicit interaction between organisms that has currently been implemented in the Eco-
SpaCE model is that preys species can be eaten by predator species. For example, a weasel has access 
to all species in its neighbourhood (home range), and can eat prey species by killing them. The 
predator will forage every day in search of food. If it finds its prey species it will try to consume them 
and it will accumulate the prey item’s biomass as energy and its internal contaminant concentrations 
of chemical stressors as contamination. Predation is somewhat different for prey species of different 
food web levels. 

Predation on plants and invertebrates 
Plant and invertebrate species are searched and foraged by predators at basic cell level. Plants and 
invertebrate prey species (organisms of the first food web level) are always consumed if they are 
available in the cell were the predator resides and at the time of season. They are consumed in 
quantities relative to the fractions of the prey species in the predator’s diet. This means that if all the 
prey species are available they will be consumed in the same proportions as the food fractions of the 
prey species in the diet of the predator. If some prey species are not available at a certain location, the 
food fractions of the remaining prey species are increased proportional to their initial food fractions 
until the sum of the available fraction make up 100%. When the biomass of a certain prey species 
(resource) is below a certain threshold value, it is assumed not to be available anymore; it is assumed 
not to be profitable anymore to invest time in trying to consume it. This is in line with the in literature 
reported giving up densities (GUD), the density of resources within a patch at which an individual ceases 
foraging (Brown 1988, Morris and Davidson 2000). 

Predation on small mammals 
Small mammals are searched at home range level (sensing distance). When small mammal prey 
species (organisms of the second food web level) are encountered within the search distance of the 
predator, they will be consumed with the chance equal to the relative available fractions in the 
predator’s diet. This means that prey species that are more abundant will be consumed relatively more 
than less abundant species. 
One way of modelling predation on mobile preys is deterministically. The number of prey caught is 
deterministically derived from a functional response curve, i.e. a mathematical description of the 
observed relationship between the number of preys caught per predator and prey density, where the 
prey density is an emergent property. This can be a valid approach, at least for voles and probably for 
many other species. In an experiment of Sundell et al. (2000), more voles were killed at the higher 
densities during the experiment; the largest number of voles was killed at the density of 100 voles/ha, 
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11 voles in three days. The average numbers of voles killed at the densities of 4, 8 and 16 voles/ha 
were 2.8 (91.03 S.E.), 4.5 (90.7) and 6.5 (91.5) in three days, respectively. The form of the fitted curve 

derived from this data was
( )x

x
y

+
×

=
5.14
5.12

, R2 = 0.60, ANOVA; F = 16.24, p = 0.002 (Sundell et al., 

2000). 
 
Another, more mechanistic, way is modelling probability of predation dependent on density dependent 
encounter and prey preference. The catching event is modelled as an emergent property, but the killing 
(and consuming) event is modelled stochastically. If a predator encounters a (mobile) prey (emergent 
property), and the predator is hungry (emergent property), then the prey will be caught with a 
probability value (stochastic property) derived from literature. The probability with which the prey 
will be caught is derived from the mean fraction of this prey species in the diet of the predator. In such 
a way, prey preference is taken into account. Further, the higher the density of a prey species, the 
higher will be the chance of encountering (and eventually possibly consuming) such a prey species. In 
this way the prey density is also taken into account. This behaviour has, for example, been observed 
for the weasel in an English woodland; the weasels ate bank voles and wood mice in approximate 
proportion to their availability (King 1980). This predator-prey relation is implemented in the Eco-
SpaCE model. 

Software implementation 

Sensing 
Three basic mechanisms (events, active variables and methods) allow the behaviour of individuals and 
the environment to be naturally depicted within a program. Events have already been described in 
section 5.1, because they are crucial to understand the software implementation time and dynamic 
processes. Active variables and methods are described here, because they can be useful in designing 
predator-prey relations. However, they can be used for many other purposes, e.g. in reproduction (sees 
section 5.5.7) and graphical output (see section 6.1). 

Active variables 
Active variables (Rust and Lorek, 1997) are normal attributes of classes declared active (through a 
C++ template class Active). Active variables are ordinary variables in EcoSim besides the fact that they 
may become active when being changed. In fact any active variable of a given type is absolutely 
compatible to an ordinary variable of that type.  
Active variables—as opposed to normal attributes— may be observed by other objects. If a state 
variable is defined as being active, one may associate so called observer methods with this variable. 
Those observer methods will automatically be invoked whenever the value of an active variable is 
changed. An ‘observer’ object may specify in advance how to react upon a value change in some 
observed attribute. Active variables are well suited to implementing the perception of individuals. 
Whenever objects that are perceived by an individual change their state, the observing individual is 
automatically activated by the simulation engine.  
The modeller may assign as many observer methods to one active variable as are needed. Observer 
methods may be defined to be invoked before or after the value of an active variable changes (so 
called pre- and post-observer).  
Once again, the flow of control does not need to be implemented by the programmer. The simulation 
engine automatically activates all objects observing an accessed attribute (Lorek and Sonnenschein 
1999). 

Active methods 
The only difference between active variables and active methods is that not attributes but the 
activation of methods may be observed. As for active variables, active methods are a good means for 
modelling the perception of individuals. Active methods should be used when an observed action does 
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not change the state (active variables) of an object or when an object is only interested in the action 
itself but not in its outcome (Lorek and Sonnenschein 1999). 
Active variables are —among many other applications— very useful to model external events (i.e. an 
external event is an event that is not caused by an object itself but by some other individual, e.g. being 
hunted). This will be discussed using a simple artificial predator–prey example. Individuals from two 
different species move around in an environment being defined by a set of discrete cells. Predator 
objects look for prey objects. If they find a prey object within the same cell, they try to catch that prey 
object. The prey object itself will try to flee. Each cell of the environment automatically stores a list of 
all objects that are currently in that cell. This is inherited through the use of the EcoSim class Cell. 
This list of inhabitants is an active variable and may be assigned some observer method. The modeller 
may for example assign an observer method that will generate appropriate events for all prey objects 
as soon as a predator object enters that cell. As soon as a predator object enters a cell, the list of all 
individuals will change. This will automatically activate the observer method for this list and 
consistently generate all necessary events for all prey objects. All prey objects may then react 
accordingly (e.g. try to flee) upon that event. By this, the modeller just specifies what will happen in a 
certain situation (Lorek and Sonnenschein 1998). Note that this predator-prey example has not been 
implemented in the Eco-SpaCE model, prey species in Eco-SpaCE do not (yet) show fleeing 
behaviour; the example here is described for a better understanding of the mechanism and to call 
attention to the flexibility of the programming environment for ecological processes. 

5.5.7 Reproduction 

Conceptual model 
Reproduction will be modelled combining deterministic and stochastic processes. Female individuals 
will produce offspring according to probability distributions derived from literature, using average 
litter size and mean number of litters per year and variability around the means. In order to implement 
reproduction in the model, portion of the population that can contribute to produce offspring needs to 
be known. This portion is assumed to comprise all mature females. So, firstly, the population has to be 
divided into males and females. Here it is assumed that the sex distribution is equally divided. 
Secondly, it has to be determined at what age an individual (of the feminine gender) starts 
reproducing. Females can become pregnant when they reach the adult stage. They transfer from the 
juvenile to adult stage if they have reached the average age of sexual maturity. The transfer to the 
adult stage can possibly also depend on the weight: females can not yet go to the adult stage, if they 
are relatively underweight even if they have already reached the age of sexual maturity. 
Once females become adult, they start to mate during the breeding season. During this season they can 
become pregnant. If they successfully become pregnant, the species-specific gestation period starts 
and the birth event will be scheduled after a certain number of days that equals the gestation period. 
During the pregnancy, a female just acts like any other individual, and therefore she can also die, for 
example, caused by predation or starvation. When this occurs, it consequently means that she will no 
longer be able to deliver offspring. 
Once the pregnancy has been completed successfully, i.e. the female survives the gestation period, the 
birth event will be executed. In this event the female will get a certain number of offspring that is 
drawn from a discrete normal distribution around the mean. The offspring will be initiated at the age 
of zero days and an average weight at birth. 
A female that has given birth to its offspring can mate again if it is still breeding season and if the 
species can breed multiple times per year. The mating stops when the breeding season is over or when 
the female has already bred an average species-specific number of litters that year. 

Energy allocation 
Extra energy is required for reproduction. Most studies have considered gestation and lactation as the 
most important reproductive events with respect to energy expenditures for mammals. In this 
respective, about 20% of the energy is allocated to gestation, 80% to lactation (e.g., Oftedal 1985). 
However, the variation in this allocation should be substantial and almost certainly is a function of the 
relative allocation of time to gestation vs. lactation (Gittleman and Thompson 1988). During the 
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gestation period, an increase of 20-30% of the energy requirement has been reported for mammalian 
species (Gittleman and Thompson 1988). For lactation they report an increase of as much as 35-149%.  
For the kestrel (Masman et al 1988) reported a daily energy expenditure during parental care (DEEpar) 
of 391.5 KJ·day-1. If we compare this with the average field metabolic rate of a kestrel (321 KJ·day-1; 
derived with a mean adult weight of 198 g and the allometric relation for birds from Nagy, 1987) this 
amounts to an increase 22% of the normal energy requirement. This value is comparable to the range 
of 20-30% for the mammals. Therefore the default value of the extra reproductive effort during 
gestation is therefore set at 25%. If additional species-specific data is found that significantly deviates 
from this value, than the value for the species of concern can easily be adapted. If female individuals 
do not find enough food during pregnancy, they can starve. 
Millar (1977) developed a formula predicting the reproductive effort, i.e. a multiple of the female 
requirements and indicates the amount of energy that females must acquire, relative to her own 
maintenance requirements, in order to wean her offspring successfully. This is thus the relative energy 
cost during lactation. The formula is: 
 

75.0

75.0

M
mN w×

         (23) 

 
Where N = litter-size and mw = weight (g) at weaning, M = adult weight (g). This formula will be used 
for calculating the extra energy required during lactation. 

Software implementation 
The sex of an individual is determined when initialising the individual simply by calling the method 
determineSex(). This method randomly assigns a sex, each with an equal chance of 50%. The variable 
mature is an active variable of the type Boolean. As soon as the individual gets mature, this variable is 
set to true and the reproduction process is started. A mature female can then become pregnant when 
the breeding season has started. 
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6 Model interface and output 
For reading input data, presented in tabular form, a generic input (and output) module has been 
implemented using a source code script written by Burkardt (2006; table_io.cpp) and extended for 
specific needs of the Eco-SpaCE model. It reads data presented in the form of tables of varying sizes 
from simple text files. In these files it is assumed that each line represents a row. Most lines of the file 
are presumed to consist of column number of words, separated by spaces or tabs.  There may also be 
some blank lines, and some comment lines, which have a "#" in column 1. This input module can 
handle tables of the formats: double, integer, and char. 
For writing (intermediate) results to text files, a print module has been developed. For example, during 
the simulation a text file is created that contains all the individuals that have died. Their main 
characteristics will be printed, including, age, weight, internal contaminant concentration and the 
cause of death. The causes of death discriminated are maximum age, starvation, predation, and 
toxication. Parallel to this a file with all new born individuals is also generated. Further, the list of 
individuals in the simulation can be written to a file at any time during the simulation via the menu 
Results->Print individuals. 

6.1 Graphical user interface 
The interactions among agents, and among agents and their environment, must be observable for an 
IBM to be truly verified and validated. Graphical user interfaces (GUIs) are an essential tool providing 
this kind of observability (Grimm 2002). For spatial models, observing the location of individuals in 
space as a model executes, is especially informative.  
A framework for small interactive window based applications is used as the graphical user interface. 
The source code of this GUI has been developed by Achten et al. (2000). It creates a resizable, 
scrollable window. The GUI for the Eco-SpaCE model is visualised in Figure 9. Additionally a simple 
timing mechanism is supported and several menus can be created, as well as dialogs. The menu, 
created for the Eco-SpaCE model, contains a sub menu for the simulation, including start, stop and 
quit functions. A menu for results has been added to print results to output files. 
 

 
Figure 9: snapshot of Eco-SpaCE model’s graphical user interface. The coloured patches resemble 
different types of vegetation (ecotopes) and the little white and red spots resemble wood mice and 
weasels, respectively. 
 
Further an initialisation function is included which opens an initialisation dialog (Figure 10). This 
dialog has been created to set initial settings. These include: the number of individuals per species 
placed randomly or (optionally) in location (x,y), the metals modelled, and the starting date. 
 



 43

 
Figure 10: Snapshot of dialog for initialising the model simulation. 

6.2 Observer class 
Observer tools and observer actions define how data are collected from the IBM and reported to the 
modeller (Grimm and Railsback 2005). The tools describe what information is reported and how (e.g., 
summary statistics written to output files, spatial data reported graphically). 
The Observer class is used to track changes in cells during the simulation, i.e. a so-called “on the fly 
analysis”. When presence of individuals in a cell changes, the cell is automatically redrawn, displaying 
the individual currently present. This approach is much more efficient than drawing all cells every 
time step. The Observer class is also actively tracks the number of individuals (per species) in the 
study area (OuterCell) during the simulation. These are then automatically displayed in the Eco-
SpaCE GUI (Figure 9). 
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7 Model Application 

7.1 Model Settings 

Initialisation 
For initialising a simulation, a dialog must be opened, where the initial settings can be specified. The 
initial settings include the number of individuals of each species, which contaminants are to be 
modelled, and the starting date expressed in hour, day, month and year. Optionally, one can specify at 
which location (cell with x and y-coordinate) an individual should be placed. If this is not specified, 
the program automatically places each individual randomly in its (species-specific) suitable habitat. 
The age of the initial individuals is set a randomly between just born (age = 0) to maximum age (A). 
The weight is set according to its species-specific ideal weight at time age, using the Von Bertalanffy 
equation 24: 

 
tkemMMm ×-×--= )( 0        (24) 

 
where m = weight (g) of individual at age t (days), M = adult weight (g), m0 = weight (g) at birth, k = 
growth rate (days-1), t = age (days). 

Input 
Use of the Eco-SpaCE model is illustrated with a semi-hypothetical landscape; the available field data 
from the preceding model is incorporated into this model (see Schipper et al. 2008, Loos et al. 2006, 
2008), but some ecological processes, such as predation and reproduction have not yet been 
parameterised with real field data. The landscape consists of a 912 × 245 (223440 cells) grid, with a 
total area per cell of 25 m2, for a total landscape area of 2.85 ha. These cells contain information about 
the vegetation structure, categorized into 29 ecotope types. Contamination information is included for 
three heavy metals: cadmium, nickel and zinc.  
The Eco-SpaCE model is currently parameterised for three vertebrate species, the common vole, the 
weasel and the kestrel. All plant and invertebrate species are also implemented as potential food and 
contaminant sources for the vertebrate species. For more details about the species data and the 
contamination data, please refer to Loos et al. (2006, 2008) and Schipper et al. (2008). 

7.2 Results 

Verification 
Some simulations have been carried out to verify whether the model works as it should. The following 
issues have been verified: movement, growth (dynamic energy budget), contaminant accumulation, 
mortality, predation, and reproduction. 

Simulations 

Movement 
Simulations showed that all movement algorithms worked adequately. For one of those algorithms, the 
correlated random walk (CRW), the results (for the weasel) are shown in Figure 11. It shows the 
movement patterns of three weasels simulated with the correlated random walk algorithm. In the areas 
with ecotopes that are unsuitable for the weasel (areas with colour blue and light and dark brown) it 
can clearly be seen that the weasels move in relatively straight paths in search of suitable habitat. In 
the green and grey areas (suitable habitat for the weasel), the animals walk in paths showing more 
curvature. This results in foraging behaviour where weasels visit suitable habitat more frequently than 
unsuitable habitat. 
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Figure 11: Movement patterns of three weasels simulated with a correlated random walk algorithm. 
Red spots represent successive movement steps, coloured areas represent different ecotope types, 
black area is outside the study area. 

Growth 
Individual growth has been verified for the common vole for which some validation data was available 
(observations by Drozdz 1972 and Grodzinski 1978). Figure 12 shows the ideal growth curve of the 
common vole (black line). 
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Figure 12: Simulated growth curves of the common vole in two scenarios with scarcity of food (thin 
blue and brown line), compared to its ideal growth curve (thick black line) and to observed data from 
literature (yellow and pink dots). 
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The common vole started to grow at the weight of newborns (1.85 grams) and increases until it has 
reached the adult weight at 23.4 grams. Comparing this to field data from Drozdz (1972) and 
Grodzinski (1978), reveals that the growth curve fits the field data reasonably well. The brown and 
blue lines show the simulation of two common voles in two different scenarios with food scarcity, 
with between 50-100 KJ and 60-100 KJ of metabolisable energy form food available per day, 
respectively. It shows that the individual, with less energy available from food, grows a little slower 
when it approaches the adult weight and its final body weight fluctuates around a lower adult body 
weight than the individual who has access to more daily energy from food. 

Contaminant accumulation 
The exposure module has been tested by simulating both the weasel and the common vole in different 
situations. 
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Figure 13: Accumulation of Cd and Zn in two simulated weasels 
 
For the weasel two scenarios have been simulated: one for Cadmium (blue) with an absorption 
efficiency (kin) of 2% and an elimination rate constant (kout) of 0.0005 day-1 and a second for zinc 
(purple): with an absorption efficiency (kin) of 25% and an elimination rate constant (kout) of  
0.04 day-1. Figure 13 shows that the internal concentration rises when weasels eat contaminated food. 
It decreases when the weasels do not find food, and hence, the net accumulation becomes negative; 
they eliminate. In the first scenario (Cd), the elimination is very slow, whereas in scenario two (Zn) 
this is rather fast. The uptake of zinc is relatively high compared to cadmium. 
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Figure 14: Simulated accumulation of cadmium in the common vole at three different locations. 
 
For the common vole, three individuals were simulated at different location with different contaminant 
concentrations in soil, and hence, in the food of the common vole. In the simulations food (vegetation) 
was always available. Their internal cadmium accumulation was predicted in time and Figure 14 
shows that the cadmium concentration constantly increases. This is as expected, because food that is 
contaminated is always available, so there is no elimination phase. Further, the rate at which cadmium 
is accumulated hardly decreases; the steady state is not reached. This is also expected for cadmium, 
because it is known that mammals hardly eliminate any cadmium, reflected by the low value for the 
elimination rate constant (kout = 0.0005 day-1). 

Predation 
In order to test the predator-prey relationship, a hypothetical simulation of a wood mouse (prey) and a 
weasel (predator) population has been carried out. The simulation started with two weasels and 
seventy wood mice (Figure 15). Due to predation, in the first twenty days, the wood mice population 
gradually decreases. Then the population rapidly increases, because after a gestation period of 21 days 
new offspring is born. At day 32 a weasel dies, because of starvation. As a result, the wood mouse 
population decreases less rapid; only one weasel preys on them. Finally, at day 98 the second weasel 
dies and there is no risk of predation for the wood mice. Consequently, the wood mouse population 
starts to increase rapidly, at intervals (because of the gestation period). 

Reproduction 
To test the reproduction, a scenario without predators and with sufficient food has been executed with 
a population of wood mice starting with 10 individuals (Figure 16). These individuals were randomly 
attributed an age and a corresponding weight. Figure 16 shows that population of wood mice grows at 
intervals of with between 2 and 7 newborns per litter to 325 individuals after 156 days. Fitting an 
exponential curve through the population growth, shows that the curve fits very well (R2 = 0.98) and 
hence the population grows exponentially (until the carrying capacity for the area will be reached). 
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Figure 15: Predator-prey relationship in a simulation starting with 2 weasels (predator) and 70 wood 
mice (prey) 
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Figure 16: Reproduction. Growth of a wood mouse population in a scenario without predators and with 
sufficient food, starting at a population of 10 individual of different ages and an approximately equal 
sex distribution. 
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8 Discussion, Conclusions & Recommendations 

8.1 Discussion of model 

Verification 
The overall verification of the model shows that the processes implemented work adequately. 
The correlated random walk movement algorithm, as shown in Figure 11, allows the organisms to 
adapt to their environment by visiting suitable habitat more frequently than non-suitable habitat. 
Thereby they increase their fitness.  
Figure 12 showed that the individual growth of a common vole individual followed the ideal growth 
curve when it had access to sufficient food and it showed that its growth decreased when it could not 
find enough food. Further, the ideal growth curve fitted the observed data form Drozdz (1972) and 
Grodzinski (1978) well at visual inspection. The dynamic energy budget and the individual growth 
thus seem to work well. 
Figure 13 and 14 showed that the accumulation of metals implemented in the model correctly 
functions as a balance between uptake and elimination processes. Validation of the accumulation of 
the metals cadmium and zinc can be found in Schipper et al. (2008) and in Loos et al. (2008), 
respectively. 
Population growth is implemented in the model as a difference between mortality events and birth 
events. Figure 15 demonstrated that mortality events of a prey species caused by predation operate 
properly. Figure 16 showed that the population of prey species grows exponentially without the 
presence of predators. This is in line with the Lotka-Volterra equations proposed by Lotka (1925) and 
Volterra (1926) and describing predator-prey relations, were the prey are assumed to have an 
unlimited food supply, and to reproduce exponentially unless subject to predation. 

Model input 
The model is relatively complex in the sense that it contains many parameters. This implies that the 
model also requires many data as input, it is data intensive. Eco-SpaCE is set up as a generic model 
and is therefore applicable to any contaminated location, with food web of terrestrial vertebrates. 
However, for different locations with other species, new input data is needed and should be updated. 
Further, data for some parameters (like the reproductive effort or the shape parameter of correlated 
random walk algorithm) are scarce and not always available for the species of concern. This can be 
solved by extrapolating the data from species that have been studied to input data for the species in the 
model. This extrapolation step brings along extra uncertainty and the model results might become less 
reliable. 
LC50 and LC100 data are scarce and difficult to translate to what happens to individuals over a certain 
time period. These values represent the mortality at the population level and are thus not directly 
translatable to the individual. Further, they are derived after a certain number of days over which the 
experiment was carried out. It is not straightforward how to extrapolate the lethal concentration of this 
time period to a period equal to the time step of the model. 

Model resolution 
Rather than perceiving time as a continuous phenomenon, in a discrete event simulation time is 
simulated at discrete intervals at which events occur. Computationally the time elapsed during one 
discrete interval can easily be changed. However, many model variables are parameterised at fixed 
time resolutions. For example, the energy related parameters are defined at time intervals of one day. 
The model is therefore less flexible in simulating at different time scales. A similar situation applies 
for the spatial resolution of the model. Computational it is easy to change the resolution, but the input 
data should be updated meeting the new resolution. It should also be bared in mind that the spatial 
scale might influence processes such as movement and species interaction. 

Model structure 
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The object-oriented programming approach closely resembles the way we perceive the real world. 
Additionally the C++ programming environment in combination with the EcoSim libraries are flexible 
in modelling ecological processes. These factors make it a suitable and flexible combination to 
develop an individual-based exposure model such as Eco-SpaCE. The verification of the model also 
demonstrated the suitability of the approach chosen for the modelling purpose; it proved flexible 
enough to model all relevant processes. The Eco-SpaCE model is set up in a way, where general 
behaviour is defined at the ExpoIndividual level covering all the species-specific classes. If needed, 
additional modules or specifications at the species level can easily be added, because of the hierarchal 
and modular structure of the object-oriented approach. 
The Eco-SpaCE model tries to predict effects at the population level. Therefore certain population 
dynamics were introduced, making the model more complex, both in the number of processes to be 
modelled as in the number of objects modelled simultaneously. This increased complexity and extend 
of the model (number of cells and individuals), makes the model also demand more computer 
processing power. Scenario runs brought to light that the simulation time dramatically increased with 
an increasing number of individuals simulated. This is partly caused by the design of the Scheduler 
were the list of events per time step is randomized to prevent unrealistic behaviour. This 
randomisation probably costs much time. 

Model approach 
Receptors are integrators of the multiple stressors to which they are exposed. The receptor-oriented 
approach used in Eco-SpaCE is facilitated by the individual-based modelling approach. Because Eco-
SpaCE is spatially explicit it enables taking into account the spatial variability of environmental 
characteristics, such as contamination. The combination of the receptor-oriented approach with the 
spatially explicit approach is especially appropriate for predicting cumulative risk. 
Recently some other receptor-oriented and spatially explicit models have been developed that address 
cumulative exposure to chemical and natural stressors. The model SE4M developed by Hope (2005) 
also incorporates multiple stressors in a spatially explicit context. However, SE4M is only applied to 
one individual at a time in small hypothetical scenarios and it does not calculate mortality endpoints. 
ALMaSS (Topping et al. 2005, Topping and Odderskær 2004) is a spatially explicit model that 
incorporated both chemical (pesticides) and non-chemical (land-use change, food availability) 
stressors for quantifying their effects on population size and survival of a bird species. Because it did 
not model multiple species, predation was not incorporated. 
The approach followed during the development of Eco-SpaCE was to start simple and only 
incorporate the most essential elements that influence the endpoints of interest (see section 2.1), with 
the possibility to further extend the model with additional elements and processes. This implicates that 
some elements that might also influence the endpoints might not be included. For example, effects of 
contamination on reproductive, developmental, metabolism, and growth processes are not (yet) taken 
into account. Therefore the predicted risk by the contaminant might be an underestimation of the 
actual risk for the population. 
The inclusion of interactions between individual species and natural stress facilitates meaningful 
comparison of chemical with biological stressors by predicting cumulative mortality risk form 
intoxication, predation and shortage of food. Expressing risk of different stressors, both chemical and 
biological, with the same effect endpoint (i.e. mortality), enables an easy combination of these 
multiple risks. It additionally allows comparing the contribution of the separate stressors to the overall 
risk. Population survival arises from the individual traits like mortality and reproduction. This means 
that if we model the mortality and birth events of the individuals, we can determine the survival of a 
population. Nature managers are often more interested in the survival rate of a population, rather than 
in the information of whether a species is potentially at risk. This model helps to translate the exposure 
of multiple stressors in the environment to a risk endpoint that is useful for nature managers. 
The Eco-SpaCE model addresses four important endpoints mentioned in section 2.1. The first two 
endpoints (internal contaminant concentration and risk indicator) were already incorporated in the 
preceding spatially explicit exposure model by Loos et al. (2006) and Schipper et al. (2008). The latter 
two (population size and number and cause of mortalities) are new model endpoints and make this 
model interesting for a wider application, because the results for these endpoints are more meaningful 
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to nature and risk managers. The model therefore has a good potential to link risk assessment to risk 
management. 

8.2 Conclusions 
The Eco-SpaCE model is a spatially explicit individual-based exposure model implemented in C++ 
using an object-oriented approach. The C++ programming environment is flexible in modelling 
ecological processes and therefore all relevant ecological processes required for the construction of 
Eco-SpaCE could be implemented relatively easy. The object-oriented programming approach closely 
resembles the way we perceive the real world. As a result the conceptual model of Eco-SpaCE could 
be implemented into the software relatively straightforward. 
It was aimed to make the Eco-SpaCE model as simple as possible, yet modelling all the relevant 
processes required for adequately predicting the endpoints of interest. In the range of models with 
increasing complexity, the model should lie somewhere between a models being too simple to 
adequately predict the desired endpoints and models that becomes so sophisticated and complex that it 
contains too many irrelevant parameters. Incorporating all desired ecological processes into the model 
brings along a few extra parameters. As a result Eco-SpaCE is more complex than its preceding model 
(SpaCE; Schipper et al. 2008). The increased number of input parameters makes it more data intensive 
and computationally demanding. Unfortunately, the model’s input data was not always readily 
available, which means that some assumptions and/or extrapolations had to be made. This 
consequently introduced extra uncertainties into the model results. 
The Eco-SpaCE model addresses most ecological processes that are relevant in determining the risk of 
several chemical and biological stressors for individuals and for a population as a whole. Such 
processes include individual growth, food web relations (predation) and reproduction. The model 
verification showed that the processes have been implemented properly and function as expected. The 
model is therefore able to predict the cumulative risk to multiple stressors, such as predation, 
starvation, toxication, and in the future flooding, and directly compares chemical and biological 
stressors. In this way some perspective can be gained on the chemical stress in relation to biological 
and natural stress. The model calculates the number of deaths in a population simulated in a scenario 
with several stressors and it tracks the causes of these deaths (i.e. the stressor that contributed to the 
death). This allows for an effect assessment of different stressors on population survival, which is 
interesting and meaningful information for nature and risk managers. The model therefore has a good 
potential to link risk assessment to risk management and makes it interesting for a wider application. 
The model is currently parameterised for the effects endpoint mortality. In the future, to get a 
completer understanding of the total effect and of the relative contribution of contamination to the 
overall risk and assuming that sufficient data is available, extra toxicity data for endpoints other than 
mortality (such as growth, development, reproduction, etc.) could be incorporated into the model at 
those ecological processes at which these toxicity endpoints act. 

8.3 Recommendations 
The Eco-SpaCE model quite input intensive and computationally demanding. When simulating an 
entire food web with all the individuals that comprise the populations of the species in the food web, 
the simulation time rapidly increases. It is recommended to improve the model efficiency in 
simulating complex scenarios. To decrease the simulation time the efficiency of the scheduler needs to 
be improved, enabling to increase the simulation speed when simulating many individuals. 
Further, the model might be extended with more detailed modules, for improving the prediction of the 
actual risk of multiple stressors for terrestrial vertebrates. To get a fully understanding of the total 
effect of environmental contaminants, effect endpoints acting at all processes, such as growth and 
reproduction, should be included in the model. Further, the contaminant transfer from the mother to its 
offspring should be included to improve the prediction of the internal contaminant concentrations. 
Specifically for the study area of floodplains, it is recommended to include flooding events. This 
allows the model to also predict the risk to an additional physical stressor, namely flooding. Flooding 
is considered as an important stressor in riverine areas. 
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