ﬂ‘li

NeracIe

C

Project no. 003956

Project acronym NOMIRACLE

Project title Novel Methods for Integrated Risk
Assessment of Cumulative Stressors in
Europe

Instrument IP

Thematic Priority 1.1.6.3, ‘Global Change and Ecosystems’

Topic VIl.1.1.a, ‘Development of risk
assessment methodologies

Deliverable reference number and title:
D. 4.2.13 Ecological and Spatially explicit Cumulive & Exposure model (Eco-
SpaCE), an individual-based ecological exposure metifor terrestrial

vertebrates in an object-oriented programming platbrm

Due date of deliverable: 30 April, 2008 Actual sussion date: July, 2008

Start date of project: 1 November 2004 Duratioryears

Organisation name of lead contractor for this detable: NERI

Revision [draft, 1, 2, ...]:

Project co-funded by the European Commission withénSixth Framework Programme (2002-
2006)

Dissemination Level

PU | Public X

PP Restricted to other programme participantsyghiolg the Commission Services)

RE | Restricted to a group specified by the consarijuncluding the Commission
Services)

CO | Confidential, only for members of the consorti(intluding the Commission
Services)




Authors and their organisation:

NeracIe
Mark Loos, RU @

Ad M.J. Ragas, RU
A.J. Hendriks, RU
M.J.Plasmeijer, RU

Deliverable no: | Nature: Dissemination | Date of delivery:
D.4.2.13 R level: PU
Status: Date of publishing:

Reviewed by (period and name):
Jack Faber (ALTERRA) on 30 June, 2008
Jan Baas (VU) on 30 June, 2008




Contents

Summary

1 Introduction
1.1 Background

111
112
1.13
114

Problem setting
Current state
Aim of research
Aim of report

1.2  Report Outline

2  Model Purpose
2.1 Research questions and modelled endpoints
2.2 Case study

221
2.2.2

Location
Food web

3 Modelling concept and platform
3.1 Introduction
3.2 Individual-based modelling

3.21
3.2.2

Emergent properties
Stochasticity

3.3  Object-oriented programming

3.3.1

C++ andEcoSim

4  Model Structure
4.1  Conceptual model

41.1
4.1.2

Environment
Organisms

4.2  Software structure

42.1
4.2.2

Environment
Organisms

5 Model Processes

51 Time

511
5.1.2

Conceptual model
Software implementation

5.2  Stochasticity

521
522

Conceptual model
Software implementation

5.3 Environment

53.1
5.3.2

Conceptual model
Software implementation

5.4  Dynamics of level | organisms

5.4.1
542

Conceptual model
Software implementation

5.5 Dynamics of level Il and Il organisms

5.5.1
55.2
55.3
5.5.4
5.5.5
55.6
5.5.7

Aging

Growth (& energy balance)

Accumulation

Mortality

Movement (organism-environment interaction)
Foraging (organism-organism interaction)
Reproduction

6  Model interface and output
6.1  Graphical user interface
6.2 Observer class

7  Model Application

©COON~N~NUERARADRWWWNNNNPE

33



7.1  Model Settings
7.2 Results
8 Discussion, Conclusions & Recommendations
8.1 Discussion of model
8.2 Conclusions
8.3 Recommendations
References

44
44
49
49
51
51
52



Summary

Chemical, biological, and other physical stressars cause a variety of effects on human and
ecological health, and assessing the risks assdamth them is, both methodologically and
computationally, considerably more complex thamentrrisk assessment practices. Realising that
ecological receptors are exposed to toxic mixtarebsto natural stressors in a heterogeneous
environment, proper spatially explicit methodsdaplogical risk assessment are necessary to egaluat
the risks posed by the contaminants to wildliféuither means that explicit contaminant flow thghu
the food web is required starting from the soilteonination to the higher level species to model the
accumulation of contaminants in target species asdiop predators. This can be achieved by using a
food web approach.

A spatially explicit exposure model was developetha Department of Environmental Science of the
Radboud University Nijmegen. This model has begiieg to investigate the influence of
environmental heterogeneity on the exposure otfr@strial vertebrate species to spatially variable
soil metal contamination in a Dutch floodplain ardawever, the model had some limitations.
Although the model is individually based, only agte organism individual can be modelled at a time,
implying that interaction between individuals wamaxistent. Further, multiple stress having the
character of cumulative stress to both chemicabkstirs (contaminants) and natural stressors (such a
food scarcity and predation) was implemented. Tislusion of interaction and natural stress is
important to determine the actual risk posed byrgbal stress in relation to other stressors. The
model generated results that tell which part obpypation is potentially at risk, but it does nelf t
whether a population can survive such a risk. Bkted would be a more relevant and meaningful
result, especially for nature managers.

Therefore, a new model called Eco-SpaCE (Ecologindl Spatially explicit Cumulative Exposure
model), was developed. It is an individual-basedehthat has been implemented in an object-
oriented programming environment within C++ anchg&coSimlibraries. This report is a technical
report of Eco-SpaCE describing the model structilne processes modelled, the software
implementation, and a motivation of the choices endring the model development.

Eco-SpaCE is a generic model that can predict expdevels and risks of certain chemical and
natural stressors for terrestrial vertebrates Htuilt in such a way that it can be applied to ynan
different locations, with diverse food webs andisgs. The model simulates a system that is
composed of mobile objects representing the orgamigividuals, in this case terrestrial vertebrates
of interest, and a 2-dimensional grid of cells fioat the landscape in which the individuals livela
with which they interact. The species to whichitidividuals belong are arranged in a food web. This
food web comprises the mobile organisms and tleid fesources (plant and invertebrates species).
The system is simulated through time by chronolatidnitiating discrete events that are esserftial
predicting exposure to multiple stressors, sucma@gement, foraging, etc.

Relevant ecological processes have been impleméntichulate population dynamics and be able to
predict risk of multiple stressors at the populatievel. These processes are individual growth,
predation, reproduction, movement, accumulatiod, raortality. The object-oriented programming
approach, which closely resembles the way we perdbe real world, and the flexible C++
programming environment facilitated the constrhese processes in the model’s software. Model
verification demonstrated that the processes haea bmplemented properly and function well. The
programming environment further assures that theeinoan be extended with additional modules
relatively easy. Because of its complexity the mdgleelatively data intensive and computationally
demanding. The incorporation of relevant ecologitatesses into a cumulative exposure model
enables Eco-SpaCE to directly compare chemicabaidgical stressors by predicting cumulative
mortality risk to predation, starvation, and totioca. In such a way the effect of the differenestors
on population survival can be estimated. This iamtggful information for nature and risk managers
and gives the model good potential to link riskeassnent to risk management.



1 Introduction

1.1 Background

Although it is generally acknowledged that chemib&blogical, and other physical stressors can
cause a variety of effects on human and ecologiealth, assessing the risks associated with them is
both methodologically and computationally, consadidy more complex than current risk assessment
practices. The interaction between environmenthagadth is far more complex than is commonly
understood. An understanding of the complexitywhalative risks is a prerequisite for the
development of more efficient guidelines to provitd¢a for future regulation of chemicals. For this
reason it is important that we improve our undeditag of complex exposure situations and develop
adequate and novel tools for risk assessment (Nudldiy 2006).

1.1.1 Problem setting

A major shortcoming of current approaches to emvirental risk assessment is that they usually do
not to allow for site-specific and other spatialstailed evaluations. However, many scientists (e.g
Marinussen and Van der Zee 1996; Hope 2000; Katreg 2002; Linkovet al. 2002; Gainest al.

2005) generally acknowledge that exposure and hesicés strongly influenced by the spatial
positions of both receptors and stressors. Regliiat human and ecological receptors are not
exposed to individual substances in a relativeipbgeneous environment, but to toxic mixtures and
to natural stressors in a heterogeneous environmaeite-specific and spatially explicit approagh i
especially important in a truly cumulative approdtibstrative examples of a heterogeneously
contaminated environment are floodplains alongethbanked floodplains of the lower Rhine River in
the Netherlands. Due to many years of depositiatonfaminated sediments, these floodplains
contain large amounts of heavy metals. The dedrpellution varies greatly between the various
floodplains and even within the floodplains, be@agboth natural processes, i.e. sedimentation,
erosion and resuspension, and human influencesaegvation of gravel, sand and clay, and the
construction of embankments and weirs (Kooistral, 2001a; Middelkoop, 2002; Kooisted al,

2005). Because of the heterogeneity in pollutanteatrations within a floodplain, proper methods
for ecological risk assessment incorporating spatipects of exposure are necessary to evaluate the
risks posed by the contaminants to wildlife (Ko@igt al, 2001a). It further means that explicit
contaminant flow through the food web is requiridtsng from the soil contamination to the higher
level species to model the accumulation of contamt®in target species such as top predators. This
can be achieved by using a food web approach. itiregien sketched above applies to many other
polluted areas.

1.1.2 Current state

A spatially explicit exposure model was developetha Department of Environmental Science of the
Radboud University Nijmegen (Lo@s$ al, 2006; Schippeet al, 2008a). This model has been applied
to investigate the influence of environmental hegeneity on the exposure of 10 terrestrial vertebra
species to spatially variable soil metal contanimain a Dutch floodplain area. Results showed that
this model worked quite well for predicting intehicadmium and zinc concentration levels in mice
species; on average, the differences between nezhand predicted values ranged from a factor of
0.96 for the bank vole to 2.5 for the wood mousgh{feret al, 2008a) and from 2.1 for the bank
vole to 2.90 for the common vole (Loesal., 2008), for cadmium and zinc, respectively.

However, the model has some limitations. It is tased in Visual Basftdevelopment system
Application for Microsoft Excél spreadsheet software program. Although the madebividually
based, only a single individual can be modellea tihe. This implies that interaction between
individuals is nonexistent. Further, multiple sgrésving the character of cumulative stress to both
chemical stressors (contaminants) and naturalssire¢such as food scarcity, interindividual and
interspecies competition, and predation) has nobgen implemented. The inclusion of interaction
and natural stress is important to determine theshdsk posed by chemical stress in relationthep
stressors. The current model generates resultsethathich part of a population is potentiallyrak,



but it does not tell whether a population can signguch a risk. The latter would be a more relevant
and meaningful result, especially for nature marsage

1.1.3 Aim of research

In order to implement the above mentioned elementigxible programming platform is needed that
facilitates the construction of a model that adégjyaaddresses species interaction and which can be
made suitable for simulating the effect of multipteessors (including natural stressors). Toward
simulating the environment and its processesilise to use an approach that closely resembles the
way we perceive the real world. Object-orientai®euccessful in modelling organism individuals
because its basic concepts closely resemble tlvodsgécal principles underlying the representation
of organisms. For organism individuals and theraxtBons between them, the object-oriented
representation is seen as conceptually and tedlynacivantageous (Maley and Caswell, 1993;
Silvert, 1993; Judson, 1994; Reuter and Breckli®§4; Downing and Reed, 1996; Mooij and
Boersma, 1996; Congletat al, 1997; Holset al, 1997; Tischendorf, 1997; Derry, 1998; Liu and
Ashton, 1998; Lorek and Sonnenschein, 1998; Zi9g818Beecham and Farnsworth, 1998; Westervelt
and Hopkins, 1999; Bian, 2000a,b). In a spatiatextnthe object-oriented representation is clearly
suited to phenomena that are perceived as obfebjsct-orientation is conceptually compatible with
a geographic object model and it is straightforwtaraientify a geographic object with a software
object and attach to it all necessary attributesh s physical characteristics, geometry, motod,
location-time (Bian 2000a).

1.1.4 Aim of report

This report aims at describing the new model, daleo-SpaCE (Ecological and Spatially explicit
Cumulative Exposure model), implemented in an dbjeiented programming environment. The
report focuses on the model structure, the prosasselelled, the software implementation, and a
motivation of the choices made during the modektigyment.

1.2 Report Outline

Chapter 2 describes the purpose of the model;rbt@gm being addressed. In the next chapter
(Chapter 3), the model concept applied and therprogning platform will be discussed in more
detail. Chapter 4 explains the structure of the ehatiereby describing the different entities
represented in the model. In chapter 5 the dynaamdsprocesses of the model entities will be
specified in detail, both conceptually and the vtdyas been implemented into the software. Further,
chapter 6 outlines the user interface and outpuiarfel results. Chapter 7 contains the model ggttin
and describes the results specific for some saenarin for model verification. Finally, chapter 8
discusses the model and gives conclusions ancefurtigcommendations.



2 Model Purpose

Starting point of this research is the Eco-SpaCHeha generic model that can predict exposure
levels and risks of certain chemical and naturalssors for terrestrial vertebrates. The model
simulates a system that is composed of mobile thjepresenting the organism, in this case
terrestrial vertebrates of interest, and a 2-dinwgrad grid of cells that form the landscape in vhibe
organisms live and with which they interact. Thsteyn is simulated through time by chronologically
initiating discrete events that are essential fedjcting exposure to multiple stressors, such as
movement, foraging, etc.

The model is built in such a way that it can beligppto many different locations, with diverse food
webs and settings. However, the model has beempggesed for and applied to a specific case
study, i.e. heavy metal contamination in a Dutgkrrifloodplain. For reasons of clarity, the moddl w
be explained with examples of the case study ggttin

2.1 Research questions and modelled endpoints

The Eco-SpaCE model should potentially be ablenswar the research questions listed below.
Therefore, the model should be constructed in suehy that its structure and software
implementation are suitable and facilitate moduylgliaations that can deal with this kind of

questions. This report describes the developmethteoEco-SpaCE model as a generic software tool
that takes into account these research questitwslong term aim is to predict effects of multiple
stressors at the population level. However, the gan not be realised instantly. The short temmiai

to predict exposure levels to individuals. At therent stage some modules are given a temporary and
simplified interpretation. These modules will batsrated in more detail during later stages, e.g. t
include the effects of individual and populatioterractions on exposure.

Research questions to be answered by the modatecl
1. Are certain species potentially threatened by cuoirtation?
2. Can a species survive a certain mixture of cheifgtahd natural stressors?
3. Which stressors are causing the highest risk arat islthe contribution of chemical stress to
the overall stress?
4. Does the model adequately predict exposure to nongdion?

In order to address the above questions the matielaes the following endpoints:
1. Risk indicator, calculated as exposure concentraifarganisms divided by the Predicted No
Effect Concentration.
2. Survival of a species, expressed as the numbedofiduals
3. Number and causes of death, in order to compardiffeeent stressors and to quantify the
contribution of the chemical stressors.
4. Internal concentration in organisms

2.2 Case study

2.2.1 Location

This model is applied to the study area ‘the Afésrsche en Deestsche Waarden’ (ADW; Figure 1),
an embanked floodplain located along the Waal River main distributary of the Rhine River in the
Netherlands. The reason to choose for this paati@rea is twofold. Firstly, the data availabilisgil
concentrations of heavy metals are available, dlsawelata on inundation, vegetation and data to
validate the model. Secondly, the floodplain is sradely and spatially heterogeneously polluted with
heavy metals (Van Vliett al, 2005) and subjected to an ecological rehabdiaprogramme since
1995 (Zandberg, 1999). It is therefore an area &/bpecies might be at risk and determining these
potential risks is valuable because they are ralemformation for engineers and managers involved
in the nature rehabilitation.



Currently, the floodplain is the subject of an egital rehabilitation program in which safety
precautions against high river discharges are coedbivith the conversion of agricultural land into
natural floodplain ecosystems. Nature developreefureseen for almost the whole area (Ministry of

V&W 2001) and hence a realistic assessment of gabrisks is highly relevant for this floodplain.
g i~y W\ B
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gure 1: Afferdensche and Deestsche Waarden study area, river floodplain along the river Waal, the
Netherlands

The ADW floodplain measures about 285 hectaresinguhe past decades, large amounts of
sediment and particulate-bound heavy metal pohutiere deposited on the floodplain (Middelkoop
& Asselman 1998). Because the concentrations sktheavy metals show large spatial variability in
floodplain soils (Middelkoop & Asselman 1998; Midkeop 2000; Thonon 2006), floodplains seem
ideal locations for modelling in a spatially exflimanner.

The top soil consists of loamy clay deposited keyritier with an average organic matter content of
7.3 + 3.3%, a clay/silt content of 51.7 + 19.1%d arpH of 7.3 £ 0.2 (Wijnhoveet al, 2006). The
area between summer dike and winter dike is paradigiinundated during high river discharges.
Because this floodplain is embanked, water leavedlbodplain after flooding mainly by seepage
towards the river channel. Once flooded, it takesu&two to three weeks for the floodplain to tily
after the water level in the river has dropped Wwelwe height of the summer embankments
(Wijnhovenet al, 2006).

2.2.2 Food web

The model is applied to a selection of 10 terraktertebrate species which build up a food web of
three levels (Figure 2). For the top level, i.e third level, four top predators were selectetelowl
(Athene noctug kestrel Falco tinnunculuy weasel Mustela nivali$, and badgem{eles meles The
badger, little owl and kestrel are so-called tasgecies for Dutch river floodplains (Posteteal

1996; Balet al. 2001). The weasel and kestrel are currently ptéeehe study area. According to the
diet preferences of the four top predators, sixllsmammalian species were selected for the second
food web level, i.e. wood mousagodemus sylvaticysbank vole Clethrionomys glareolys

common vole Kicrotus arvalig, common shrew3orex araneys European moleTalpa europaen
and rabbit Qryctolagus cuniculys The first food web level consists of plants amgertebrates, i.e.
earthworms, insects, spiders, gastropods, isopedgtation, fruits, and maize.



Eurasian
badger

Common Least

Third level
Top predators

Second level
Small mammals

Gastropods

~——t— =

- - I -~
s _ - e I 1
Pl g |-
. e - AT g
First level s =23
ot » @
Invertebrates

Figure 2: Schematic overview of the food web, consisting of three levels (plants and invertebrates,
small mammals, and top predators) and their predator-prey relations (predators feeding on first and on
second level prey species indicated with dashed and solid lines, respectively)



3 Modelling concept and platform

3.1 Introduction

The Eco-SpaCE model described in this report casldssified as an individual-based model (IBM)
implemented in an object oriented programming platf (OOP). It is not a coincidence that the model
is implemented using such an approach. This chajdsrto clarify the reason for this choice.

3.2 Individual-based modelling

For the purpose of studying autecological relatioinsdividuals to the environment (including the
physiological properties enabling them to certarfgrmances) and the population level, the
individual-based approach is well-suited (Breck]ig§02). The basic concept of Individual-Based
Modelling (IBM) is simple and appealing: build a d&b of an organism individual, build a model of
the environment, and let a computer create multigé/iduals and simulate the interactions of the
individuals with each other and the environmentth/din individual-based model, an ecosystem is
represented as a large collection of interactigguoism individuals. Population-level dynamics,
therefore, are elicited in simulation by summing tollective activities of many individuals. Thus,
with this approach, the basic unit for modellinghis individual, which is portrayed as a discrete
object, whose state is usually described by a nuwifttributes. An individual’'s behaviour is
modelled with various rules that represent its piakinteractions with other individuals and witk
environment (Parrott and Kok 2000). In many wayslding a model of an individual is easier than
building a model of a population: individuals caantbsted in controlled ways that populations cannot
and are more limited in their range of responselstia@refore more predictable in their behaviountha
are populations (Rose 2000).

The domain of individual-based modelling is thelgsia and explanation of complex population
patterns. It is used to link activity and behavalyratterns on the level of single individuals with
population developments and spatial configurati@recklinget al 2005). Individual-based models
extend the potential of ecological models to cofil gpatial heterogeneity and complex ecological
interaction networks with variable structures (Edeg et al 2005). However, IBM has an obvious
drawback: the modelling of populations individuglibdividual is that it takes impractically much
computation time to simulate realistic numbersnfmst populations, especially if the individual
behaviour is rather elaborate like in many appfextiels (Scheffeet al 1995).

The individual-based approach is in particular vgeited to the following aspects in studying

autecological relations of individuals to the enuwiment (Brecklingt al 2005):

- The link of individual behaviour to eco-energetizsl nutrient balances.
The behaviour of an individual has implicationshmw its energetic requirements are met. On the
other hand, certain behavioural traits require getgr expenditure. This relation can be investigate
in various mutual impacts and trade-offs betwe@seiforms, for instance in an organism’s foraging
strategies.

- Spatial organisation of a population.
Spatially explicit models are very difficult to hdla if specified on the population level while tigs
simple and straightforward in an individual-basedtext. Each individual carries its own spatial
coordinates as variables together with the codgptate them. This implies a generic description of
the organisms’ movement pattern. As a result, wartopics of population ecology can be handled
which involve spatial heterogeneity.

When carrying out an ecological risk assessmenAjERe are interested in the effects at the
population level. Furthermore, spatial heteroggmafithe contaminant distribution and of the
vegetation are important components. The employhivitapproach seems therefore appropriate
when constructing an ERA-tool. This is also refelin other models for ecological risk assessment
(Toppinget al. 2003, Hope 2001, 2005, Wolff 1994, Matsinos amalff%2003, Reuter, 2005); they all
use the IBM approach.



When designing IBMs, Railsback (2001) proposestafi concepts that should be addressed. Issues
such as emergent vs. imposed behaviours (seers&#d), what kind of adaptation is appropriate
(see section 5.5), and how fitness is evaluatezlgsetion 5.5.5) should be given a thought and can
help modellers identify and address the subtlérbpbrtant formulation decisions that determine
model success.

3.2.1 Emergent properties

Organism individuals continually adapt their beloaviand state in response to internal and external
conditions, and from these adaptive behavioursadif/iduals, population dynamics emerge in which
scientists are interested. Emergence occurs at#tem level: system behaviour may emerge from the
traits of individuals as the individuals interagtiweach other or when they interact with their
environment (Grimm and Railsback, 2005).

Modelling some particular behaviour of an IBM aseeging from adaptive individual traits is
essentially a mechanistic representation of thawebr. Instead of simply forcing the behavioub®
exhibited, the underlying, individual-level mechems that give rise to the behaviour are modelled.
The primary problem in modelling system behaviag®mergent is finding individual traits that
cause the system behaviours to emerge. The alieratemergence is imposing a system behaviour,
which resembles an empirical approach: insteadmisenting the mechanisms driving the system,
one simply forces it to reproduce behaviours olexbim real systems. This approach can be a simple,
easy way to obtain the desired outcomes. Modeligttaviour as emergent has the advantage of being
more explanatory and general and the disadvantageirig more complex (Grimm and Railsback,
2005).

There are two important reasons to use emergeirsé.ifthe purpose of an IBM is to explain how a
particular system behaviour arises from individuaits, then of course it is essential that théesys
behaviour emerges from adaptive mechanisms actitigp andividual level. A successful mechanistic
model of some process should have the advantaggirg generally applicable under a wide range of
conditions, not just under the conditions usedstoreate parameters (Kaiser, 1979; DeAngelis and
Mooij, 2003). Secondly, emergence helps make an ¢Weral and easily applied to a wide variety of
sites and situations (Grimm and Railsback, 2005)d#ling behaviours as emergent can also make
IBMs surprisingly general.

3.2.2 Stochasticity

Aside from modelling processes mechanisticallyhs system properties emerge, processes in an
IBM can be modelled stochastically. With a viewBd/s, Grimm and Railsback (2005) define
stochasticity as the use of random numbers andhpiitties to represent processes in an IBM.

They identify two reasons to choose to represgmbeess as stochastic, whereby it should be noted
that this only applies to processes that reallyukhbe modelled variable, i.e. when the variabjmuin
parameter has a relevant influence on the modebme (Grimm and Railsback 2005). The first
reason is because too little is known about thegg®to model it mechanistically. The second reason
is that, even if the process is well understooi, lielatively unimportant and would require
unnecessary effort to model mechanistically. Tur¢@D03) stated it as follows: representing a
process as stochastic means that we either areaigrebout the process or that we choose to pretend
we are ignorant to avoid unnecessary detail. A comuse of stochasticity to induce variability is in
creating the initial population of individuals &etstart of a simulation. Many IBMs use stochastic
processes to reproduce observed behaviours thatidesn described probabilistically. Stochastic
methods to reproduce observed behaviours are amieshppproach to modelling individual traits
(Grimm and Railsback, 2005). The advantages o$tihehastic approach are those of empirical
modelling. If the stochastic model of behaviouwidl-supported by observations, it is likely to be
considered reliable within the range of conditithnes observations were made in.

Stochastic processes can be used as part of ativadagit: a sequence of stochastic decisions can
produce behaviour that increases an individuai®ess if the probabilities are modelled approplyate
(Grimm and Railsback, 2005). An example is thealated random walk movement algorithm
(further explained in sectidn5.4Movement where the behaviour arises from consecutive meve



directions, stochastically drawn from a probabititgtribution, and resulting in a spatial pattdratt
corresponds to visiting suitable habitat more feggly than non-suitable habitat, which increases th
fitness of the moving individual.

3.3 Object-oriented programming

The results of an IBM are closely dependent osdfsvare. One reason, that software design is much
more important for individual-based models (IBMsan it is for conventional models, is that the
results of an IBM are the emergent properties ©fstem of interacting agents that exist only in the
software (Ropell&t al. 2002). Therefore, using appropriate software regmying methods is a critical
part of advancing the IBM technique to acceptarscaraessential tool for ecology and natural
resource management (Ropedtaal 2002). The object-oriented programming (OOP) ghgra has
become the standard approach for discrete-eventation and individual-based models, because it
has some important advantages for IBMs (Grimm aaitsBack, 2005). For organism individuals and
the interactions between them, the object-orierd#pdesentation is seen as conceptually and
technically advantageous (Maley and Caswell, 1$88ert, 1993; Judson, 1994; Reuter and
Breckling, 1994; Downing and Reed, 1996; Mooij &wkrsma, 1996; Congletat al, 1997; Holst

et al, 1997; Tischendorf, 1997; Derry, 1998; Liu andh#ss, 1998; Lorek and Sonnenschein, 1998;
Ziv, 1998; Beecham and Farnsworth, 1998; WesteareltHopkins, 1999; Bian, 2000a,b).

The primary advantage of using OOP for IBMs, actwydo Grimm and Railsback (2005), is that it
makes the code resemble the system being modetiesl ¢tosely. Creating an IBM in an object-
oriented style can provide a smoother, more nalimabetween conceptual design and software and
less abstraction is required to convert an IBM fiitstwritten description into working code. The
object-orientation approach consists of a numbérasfc concepts. Object-orientation is successful i
modelling organism individuals because its basitcepts closely resemble those ecological
principles underlying the representation of orgamsigBian 2003). Object-oriented programming is a
natural fit to individual-based modelling. For exalm the core assumption of object-orientation,
which states that the world is made of objects,limeasily linked to the existence of organism
individuals (Bian 2003).

Object-oriented programming (OOP) represents prograde and data in discrete objects, organised
in classes. The encapsulaticomcept states that each object has propertieshvelne represented as
attributes, and behaviour, which is representedetbods. Attribute values describe the stateseof th
object, such as age, sex, weight, location, etchEkass has a number of methods that define the
behaviours that objects of the class can execuie(band Railsback, 2005) and the methods can
change the state of an object. Such a changetefisteeferred to as an event. The concepts retated
encapsulation, such as properties and behaviowfjredtheir counterparts in basic ecological
principles (Bian 2003). The concept of state issistent with that in ecology, while the concept of
event has a general application in the modellingaizidual behaviour (Bian 2003). Most individual-
based models use the so-called state-based respmreept, where the behaviour of the object
depends on its state and the behaviour can agairgetthe object’s state.

The inheritance concept states that all object®@yanized in a class hierarchy, and objects ba s
class inherit properties and behaviour from itsestglass (Bian 2003). Concepts related to inhezéan
match closely many ecological principles. For exlanhe concept of class hierarchy closely
resembles taxonomy in ecology. In the object-oedmaradigm, components of a model are
individual objects, with one or more objects tdass and hierarchies of classes. In a typical ¢bjec
oriented IBM there may be several species thasaloelasses of a general organism class. Each
species can inherit some code from the generahigeclass but also has some species-specific code.
Similarly, all the individuals of a species have #ame code, but each individual has its own state
variables. Likewise, habitat units may be organireslibclasses (e.g., for meadow, forest, lake).
With its hierarchical organization of individualjebts, object-oriented programming resembles the
natural systems modelled with IBMs, so it is a natapproach to the constituency of an IBM
(Ropellaet al. 2002). Additionally, it promotes another advametaguilding an OOP code requires the
modeller and programmer to make a number of exgletisions about how the code is organized
hierarchical. Making and implementing these deassican lead to a well-organized, hierarchical code
design (Grimm and Railsback 2005).



Likewise, the concept of association is close &phnciple of social relationships between
organisms, and the concept of aggregation is ¢tot®e principle of ecosystem assembly.

Such a high level of conceptual compatibility bedwebject-oriented concepts and ecological
principles (Table 1) assures that the use of ofggentation in modelling organism individuals is
generally efficient (Bian 2003).

IBM OOP

Entity Object

State/property Instance variable/attribute
Behaviour Method

Interaction / sensing Messages

Actions in time Events in a scheduler
Individual behaviour Event

Time Schedule

Taxonomy Inheritance / Hierarchy

Table 1: parallel between IBM concept and OOP concepts

Further, in a spatial context, the object-oriemggresentation is clearly suited to phenomenaatteat
perceived as objects. Object-orientation is congjyt compatible with the geographic object model.
It is straightforward to identify a geographic atijevith a software object and attach to it all reseey
attributes (physical, geometry, motion, and logatime). The motion of an object can be explicitly
represented as a method that triggers the charigeaifon and time states of the object. Movement
rules can be implemented within the motion methd@te. treatment of location and time as attributes
of an object permits them to be updated easilyfeegliently when the object moves. This is one of
the most critical capabilities of object-orientatifmr representing dynamic phenomena (Raper and
Livingstone 1995, Worboys 1994, Kemp and Kowalcz9®4, Ramachandrast al. 1994, Hamre
1994).

OOP implements these conceptual advantages andi@scadditional technical conveniences. For
example, OOP makes it easy to use great flexibilifgrocess control; it is simple and natural foy a
object to pass execution control to any other dbjEus makes it easy to program natural processes
like interactions among individuals (Grimm and Rb#dck 2005). Messages are the ways that objects
tell other objects either to execute a behaviodo@rovide some information. Messages typically
define such important model characteristics as imolividuals conduct interactions and sensing
(Grimm and Railsback, 2005).

Further, the polymorphism concept of OOP does agelan exact equivalent in ecological principles,
but it provides technical convenience by allowihg teuse of programming components (Meyer,
1987, Silvert, 1993). Extendibility is another suebhnical convenience. It allows a program to be
extended without the need to modify the originaleccAdditionally, the OOP approach isolates both
data and code to make them less subject to unietealteration (Grimm and Railsback 2005).
Summarising, object-oriented design is improving slgstems analyst's ability to develop software in
forms which map to the problem space (“real worlgfpvide modular structures to systems under
analysis and design, are more easily maintainedreotified, and provide for reusability of software
segments. Object-oriented designs are also eadiestt

The conceptual model of object-orientation is basethe core assumption that the world is made of
objects. This assumption implies discreteness.réaleworld, however, has many phenomena which
are not easy to assign to discrete “blocks” ofrimfation at specific levels of analysis. Real-world
phenomena often operate in defiance of a simpkecbbecomposition. Many parts of the real world
are continuous, not discrete, and the choice ofevbbjects begin and end in an object-based design
can be difficult to discern or may be quite arligra he arbitrary choice of objects can create demp
interfaces between the objects (Kester 1993).

Strictly speaking, object-orientation is based o piremise that objects should, where possible,
correspond to natural features. In contrast tatbge resemblance between object-orientation aad th
representation of organisms, object-orientationtArdepresentation of the environment are not well
matched at the conceptual model level. The coneéptadel of the environment, i.e. the field model,
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is continuous. This mismatch may cause difficuliethe subsequent formalization and
implementation levels when object-orientation iedito represent the environment (Bian 2003).
Further, when choosing a raster representationeo&hvironment, whereby every raster cell is
represented by an individual object, computer resgsumight become limiting. A large number of
cells, each with its own ID, properties, and bebasj can easily overwhelm the available computing
resources (Laval, 1996) because of required stdoaghe IDs and attributes and, most criticalhe t
execution of method for each cell. The choice dfgee continues to depend on a delicate balance
between the required level of spatial detail amdatceptable computing burden. The importance of
this balance increases as the number of cellsarsere In this regard, the traditional grid modehwi
arrays of simple scalar value may be more effidilban its object-oriented version for representing
the environment (Bian 2003). The object-orientad grodel is technically more complex than the
traditional grid model and offers few representaidoenefits.

There are a few disadvantages that are integthktobject-oriented approach. The first one is tinat
productivity improvements through re-usability sdaonly after you have a library. A library genéyal
IS a collection of functions, constants, classegas and templates that extends the language
providing basic functionality to perform severaiks, like classes to interact with the operating
system, data containers, manipulators to operdtetinem and algorithms commonly needed. It also
means that one must learn the library well befaieglany serious programming. This makes the
need for good documentation (something most progrars dislike) very important.

Further, it should be noted that calling a procedursubroutine is still faster than sending a @gss
(Rettig 1987), so the run-time cost is more. Arieastudy by Cox (1984) indicated that message
passing is between 2 to 70 times slower than proeechlling.

3.3.1 C++ and EcoSim

For IBMs and natural resource models, availabléstimelude high level simulation languages and
graphical environments, code libraries (severaltwth are available specifically for IBMs), and
existing codes (Lorek and Sonnenschein 1999). Ropubgramming languages that support OOP,
and are thus suitable for implementing an IBM, &segxample, C++ (Stroustrup, 1991) and Java
with many library classes with potentially usefobls and observer capabilities. However, these
platforms provide little direct support for IBMs #itey require the code to be written mainly from
scratch; they do not provide reusable softwaregaesiThere are agent-based modelling frameworks
and libraries available that directly support ttipiementation of IBMs. A framework is a set of
software concepts that provides the overall moblettire. It is typically implemented as a code
library, a set of reusable OOP classes with whiehprogrammer customizes the framework to a
specific model (Grimm and Railsback, 2005). An egbeof a library developed for implementing
IBMs and grid-based models in C++HEsoSim(Lorek and Sonnenschein 1998, 1999); Swarm (Minar
et al 1996) and RePast (North al 2006) are frameworks and libraries for implenegthll kinds of
agent-based models and IBMs. Sikm®Sin's libraries facilitate the implementation of anMBhat
closely resembles the targeted model, C++ in coatizin with theEcoSimlibraries have been
employed as a starting point for developing the-EpaCE model.
EcoSimis a C++-class library or framework especiallyigesd to support individual-oriented
modelling and simulation of ecological systeasoSimbrings together new advances in object-
oriented discrete event simulation and ecology. giloeess of implementing individual-oriented
models is facilitated by providing specific yetensible classes of those parts that are commadh to a
such models (Environmental Informatics, 2005). 8s$EcoSimare programmers who want to
implement their own (complex) individual-orienteddels (OFFIS, 2007). Some of the special
features provided by the framework are:
Specification of static and dynamic properties ofridividuals. Individuals may perform actions
at any time during the simulation process. Actiotay be triggered by the individuals themselves,
by other individuals, or by external everisoSimimplements efficient schedulers to allow even
thousands of individual actions to be handled.

“sending a message the mechanism used to communicate betweereslassmmonly used in object-oriented
programming
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Specification of dynamically changing environmentsCells of the environment are active
objects as individuals are. They may perform asl tthereby updating the environment
periodically or due to events. Cells may be groupéa neighbourhoods or hierarchically, thereby
defining different spatial scales for an environtmen

Support for analysis and animation of generated dat during runtime. So called observer-
objects may be connected to any action of any iddal (including cells). Observer-objects
automatically become active whenever an indivigheforms an action. Observer-objects may
store those changes for later use or may repart theectly to an animation process.

Although EcoSimwas primarily designed for use in ecological medetan be used for any spatially
explicit discrete-event object-oriented model fovieonmental applications.

Table 2: EcoSim technical Details

Software EcoSim

Version 2.3

Author Dr. Helmut Loreket. al.

Platforms Linux, Solaris and Windows
Release date 2005-09-20

Website (URL) http://www.eco-software.org/index
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4 Model Structure

4.1 Conceptual model

Individual-based modelling involves the explicipresentation of several entities and components,
namely (1) organism individuals, (2) a heterogesemwironment, (3) interactions between the
individuals in the heterogeneous environment, dhdnteractions between the individuals and the
environment (DeAngelis and Rose, 1992; Maley ansiv@#, 1993; Grimm and Uchmanski, 1994;
Tyler and Rose, 1994; Westervelt and Hopkins, 1988qnicki, 1999; Bian, 2000a). A representation
of the conceptual model can be seen in Figure BieSesues, concerning the representation and
functionality of important model entities, namelganisms and environment, will be considered in
this section.
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Figure 3: Representation of the model entities Environment and Organisms and their relationships

4.1.1 Environment

Conceptual compatibility between the environmemt arspatial data model is the most important
factor that determines the efficiency of the mddgl{(Bian, 2003). The selection of proper
environment models must balance the representhmdetechnical benefits against the cost of
achieving these benefits. Gardner and Gustafsaddjd@entified two broad categories of spatially
explicit models: those using vector-based datasiras (also referred to as patch-based) for
representation of the landscape (Vuilleumier andizier 2005); and models using grid-based (or
raster-based) representations of landscapes tdasartbe interaction of dispersing individuals with
the landscape matrix (Allegt al, 1993; Gustafson and Gardner, 1996; Wieggral, 1999). The
former category has been frequently used for osgasy such as insects, which do not continuously
interact with the landscape while dispersing. Thé-gased approach has been used to simulate
species that move shorter distances per unit timddrderact more strongly with landscape features
(e.g. vertebrates and small mammals).

Raster

In spatially explicit ERA modelling, the spatiapresentation of a landscape is commonly based on
grid models where the landscape is representedibiteanumber of equally sized cells (Toppieg

al. 2003, Hope 2001, 2005, Wolff 1994, Matsinos amulff\A2003, Reuter, 2005). These cells can be
squares, triangles, hexagons or any other shapeahde used to tessellate the 2D plane. Each cell
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contains one or more values, which represent ategof the landscape such as vegetation types,
elevation, and temperature.

Bian (2000a) states that raster GIS are bettezdstit represent fields than objects since its data
structure is advantageous for representing spairginuity, spatial variation, and temporal dynasnic
Thus the regular grid data model is advantageauséalelling the environment that is heterogeneous
and dynamic. The simple grid data model does rptire the use of sophisticated database
management systems (Bian 2003).

The criticisms of grid-based models cover threenntiaes of argument: (i) the existence of an a
priori-fixed scale of resolution, (ii) in some casatributes of cells will need to be aggregateaiélly
an average) at the pre-defined scale and (iii)ithigation in representing line features and toggylo
(Laurini and Thompson, 1992). The resolution ofldyased models requires a trade off between
landscape representation and movement mechanisangrit-based approach is used to represent
narrow linear features like roads and rivers adelyahen the grid will need to be at a very ficals.
This fine resolution may not be appropriate fog&arlandscape features, such as forests, as inotay
capture all the properties of the feature. For $aage features represented by multiple grid cells,
parameters associated with the entire landscaperéeare distributed into fixed resolution cells
instead of having one value being assigned tonti;edandscape feature. Conversely, with increased
cell size, linear and point landscape features aaoa represented with sufficient accuracy. Ifrgda
cell is adopted then the cells that contain liffeatures, such as roads or streams, will have their
properties averaged over the entire cell and willlie accurately represented.

Grid-based models also have limitations for modglinovement as the grid cell resolution for both
landscape and individual movement are identicagiéndorf, 1997). That is, the step-time
movement distance and the organism’s perceptugerare defined by the scale at which the
landscape is modelled. In these types of modalsyiduals have to move across adjacent cells in
predefined directions.

A significant limitation associated with grid-basggerations is the regular partition of space iaher
in the grid model. The cell size must be determineatvance and remains fixed throughout the
course of the modelling. The arbitrary moving dii@ts and distances typical of the grid model may
cause simulation results to be unrealistic (Biab30

Modelling the movement of individuals that use éinstructures (i.e. hedges or rivers) is usually no
feasible, as these features are generally not atidguepresented at the chosen resolution of the
entire map.

Vector

Vector data structures represent landscape feaapesding to their shapes and functions via pgints
polylines, and polygons associated with multiplegraphic and non-geographic attributes (Burrough
and McDonnell, 1998; Bian, 2003). In vector-baseutiats the topological properties of objects (i.e.
shapes, neighbours and hierarchy), and the retdips between objects can be described explicitly.
Links between objects can be related to their osdr their typology (i.e. all forest patches nisey
related to each other).

Although less common than grid models, vector neded particularly well adapted to modelling
landscape features and are a useful method fostige¢ing dispersal processes (Bian, 2003). Vector-
based models provide further developmental oppiiggrin animal movement simulations such as
movement along linear network features or betwégpping stone habitats. They also allow animal
choice during dispersal such as animal attract@pecific resources, patch configuration prefegenc
or avoidance of human infrastructures.

While grid-based models require a trade off betwardscape representation and dispersal
mechanisms when choosing an appropriate grid tsimapproach is not constrained to a particular
resolution. Thus small elements like hedges mayndladed in the model as well as large areas such
as continuous forest. Different values can be @iedatch size, dispersal movement and perceptual
range. This is not the case in grid-based systemeserthe perceptual range must correspond to one or
more cell sizes (e.g. With and Crist, 1995; Gustaimnd Gardner, 1996; Wi#t al, 1997, 1999;
Farnsworth and Beecham, 1999; Bergratal, 2000; King and With, 2002).
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The added functionality and flexibility of vectoated models comes with costs (Tischendorf, 1997;
Bian, 2003). Data handling is complex and comportetly demanding. For instance, each time a
spatial object is changed or created, the topoddgatationships of the neighbouring objects need t
be updated. Vector-based models require sophistictatabase management, which may incur a
learning curve and subsequent cost. The vector hiwgdarticularly suited for modelling the
environment composed of landscape features, eashioh is perceived to be homogeneous and
stable (Bian 2003), but is limited in representyngdients of spatially continuous variables (i.e.
environmental factors), since object attributesspaial homogeneous. Despite these technicalsssue
vector-based models are well suited for modellarglscapes and investigating dispersal dynamics, as
they are able to incorporate the geometry of thehpaetworks and spatial relationships between
landscape features.

The most critical limitation of the vector modeldapporting individual-based modelling is rooted in
the data model itself. In GIS that employ the veatodel, the data system is organised according to
the coordinates of polygons, points, and lines]endtitributes and topology are attached to these
coordinates. A change in the location of a featagrires that the coordinates be updated and
attributes and topology be re-established. Sudesysare, therefore, extremely rigid which makes
the simulation of movement difficult. This criticsthortcoming has significantly limited the usefidse
of the vector data model in individual-based madg]land in the modelling of individual movements
in particular (Bian 2003).

The vector data model is used much less frequémtijmodelling than is the grid data model.
Tischendorf (1997) attributed this to logistic reas associated with the vector model, such as the
high cost of software, a steep and long learningesand the use of proprietary data models. The
vector data model provides meaningful space pamttbut at the expense of complexity in data
handling (Bian 2003).

The Eco-SpaCE model aims at simulating exposuaesipatially explicit manner thereby addressing
the spatial variability of contamination in thedyuarea. The concentration of the contaminatian is
continuous phenomenon. Both the collection of fadth and the subsequent spatial interpolation
process are based on a grid format and contammigtitnerefore best represented by a raster. Furthe
a raster is easier to implement. For these reabensnvironment will be represented as a reguldr gr
in the Eco-SpaCE model.

Layers

The environment can be constructed by severaldayggresenting the most important environmental
variables describing the area. For the study dnesetlayers are: vegetation structurecamtopes
inundation, and contaminant concentration in soil.

Ecotopes are spatial units that are assumed hor@ogsnvith respect to vegetation structure,
succession stage, and main abiotic factors reldeapiant growth (Klijn and Udo de Haes 1994).
They can be used to determine where the organissiger. It can also be used to determine food
availability, because it gives information aboutendnthe prey species reside.

For the accumulation module, spatial informationwtchemical contamination in soil substrate is
required. This is obtained from an interpolatiorpoint data with contaminant concentrations.

4.1.2 Organisms

Types

Species in the Eco-SpaCE model are divided intorh&m groups: mobile species corresponding to
the vertebrates (or thé"and 3 food web levels) and immobile species correspantbrthe plant
species and invertebrates (or tiigfdod web level). The reason for this divisionvistold: first the
model aims at modelling exposure to stressors esdpyefor terrestrial vertebrates; secondly theunat
of the species in relation to spatial resolutiothaf model influences whether it can be assumed as
mobile or unmoving (rooted in its cell).
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Functionality

The aim of the model is to predict exposure leeglshemical stressors in the terrestrial vertebrate
species modelled. It is thereby important to ineladl the essential factors that influence the exp®

to address the interindividual variability. Onetloése factors is spatial variability. Measurechi® t
spatial resolution (i.e. 25 square meters.), tigamsms at the second and third food web levelldhou
be represented as moving organisms, using mecltafioistging/movement rules such that their
spatial distribution will emerge and the spatialiaon in exposure is explicitly addressed. Thenpl
species are non-moving species by definition aadrthertebrate species that make up the rest of the
first food web level are modelled immobile as whldlavoid unnecessary complexity.

Further, the accumulation of chemical stressotkeérterrestrial vertebrates is modelled
mechanistically to gain more insight in what fastare important in determining exposure levels. The
accumulation of the stressors in the plants andrtebrrates is modelled using empirical relatiohis; t
study does not aim at understanding the underlgingesses. Rather, it merely tries to accurately
describe the internally accumulated concentratibesause these species serve as food source for the
terrestrial vertebrates and consequently alsosasiace of chemical contamination.

Apart from the above mentioned processes, growdhregproduction are explicitly modelled for the
small mammals and the top predators. This allowdattiog effects of other stressors such as food
scarcity and the effects on (the survival of) tbpydation. The plant and invertebrate species merel
serve as a food resource and its growth and refraxet not modelled. Rather the average standing
biomass is modelled deterministically, dependenherdate (growth season) and location (ecotope),
but independent of consumption by predators.

4.2 Software structure

The conceptual model described above has beenrnmepled in thé&ecoSimlibrary written in C++
using an object-oriented approach. This sectiohgiib some details about the software structure.
The basic concepts behind tBeoSimstructure will be explained. However, for specditails,

please refer to (Lorek and Sonnenschein 1998, 1889}o the reference and user manuals (Bohle,
2002a, 2002b), which can be downloadelttd://www.eco-software.org/software
TheEcoSimsoftware follows an object-oriented hierarchalicture of classes (Figure 4). The class
SimulationObjects the base class for all objects that performestasks and it is therefore the base
class for all ecological objects, i.e. all organiswdividuals and the environment; they can change
through time and perform tasks. All these objegseby inherit the ability to generate and consume
events (Lorek and Sonnenschein, 1999). Eventsaardidd by the clasSchedulerwhich is therefore
the simulation engine that mimics time by succesdgigalling and executing new events in
chronological order.

In Figure 4 most importarfcoSimand Eco-SpaCE model classes are shown in thearbiel
context.EcoSimclasses are shown in grey and classes specialdddr the Eco-SpaCE model are
shown in blue.
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4.2.1 Environment

The environment is represented by a separate (dassEnvironmen), and has been accommodated
under clasSimulationObjectenabling it to register with an object of cl&shedulei.e. to post an
event to be scheduled and executed by a schedlifer)environment is made up of multiple cells and
every cell is an instance of clasgpoCell Cells can have attributes, which describe thie sta
characteristics of the cell. The different laye¥gresenting environmental characteristics are rfextiel
as attributes of the claExpoCell The hierarchy is as follows: ClaBgpoCellis a child of class
Cell_2D, which is a child of clas€ell. ClassCell, finally, has been accommodated under ciyssce
which has been accommodated under ckasailationObject

Space

ClassCell is the basic class for modelling space and itt®mmodated under claSpace Spaces

an abstract class, implemented in order to sugqmth, continuous and discrete space. Most
applications discretise space into rectangulas @elpatches, but there might also be the need for
continuous space where each individual knows aib®absolute position in space. Those spatial
geometric properties, such as extent and dimenarenjf needed, defined in subclasses of dladk
(and subclasses of classlividual). The most important property of cla&Spaceis that it is a subclass
of classSimulationObjectThereby eacSpaceobject is an active object, which can registehwiite
scheduler to perform some tasks.@als may become active as well laglividualsand the
EnvironmentEco-SpaCE does not have any attributes.
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Cell

A cell is a logical unit, where individuals may leeated. The basic functions of classll are to
contain individuals and to specify the topologiéiongs to. The topology needs to be specified to
facilitate topological queries. So there are twsib#hings a cell is used for. First individualsymast
there and secondly cells may be related to eadr oth aTopologyobject. Subclasses Gkll (for
example clas€ell_2D) may define physical properties of cells.

Cell_2D

ClassCell_2Ddefines a cell which may have a position in sgaand y coordinate) as well as an
extent (width and height). The study area covecaiaB.85 ki and the cells in the model have a
surface of 25 M(5 by 5 m). The environment is thus made up ofagmately 225 thousand cells
(245 by 912).

ExpoCell

ExpoCellis a subclass @@ell_2Dand is specific to the Eco-SpaCE model. It ha®wuarattributes
andstructs, which contain the different layers of the enmim@nt that represent important
environmental characteristics. The ecotope layaci®mmodated under the attribuegetation
Contamination is represented astraict containing all the modelled substances of contation.
Species specific habitat quality is also storedstruct (HabitatQuality) with a unique attribute for
every species modelled. TEgpoCellalso has a®@bserverclass (see section 6.1.1 Observer), for
efficient visualisation. Th®bserverclass basically observes another class or methadkis case a
cell of the clas&xpoCelland tracks changes, which can consequently ingtier actions such as
visualising this cell.

OuterCell (study area)

Using the topological hierarchy (see section Togglpa clas©uterCellhas been created. It contains
one instance which covers the whole simulation éxeary lowest-level cell, i.e. the cell of the
hierarchy with the highest resolution is definedasmg within theOuterCell OuterCellis defined as
OUTER of all lower level cells). Thi®uterCellalso has a®bserverclass (see section 6.1.1
Observer), enabling the program to rapidly exttaetnumber of individuals present in the simulation

Topology

In ecological models, individuals often move relatto their current cell and they do need infororati
about neighbouring cells. Further, ecologists oftead to view a model on different spatial scales.
Both are supported iBcoSimusing topologies, using neighbourhood topology laiedarchal

topology, respectively. Cells can thus not onlynbghboured, lying next to each other, but they may
also be ordered in a hierarchy, being located insidoutside other cells. Those are all logical
relations.

A Topologyobject defines relations between different c&lislls may be neighboured or they may be
boxed. At the moment, eight different relations supported that put cells into neighbouring refaio
Those are north, south, west, east, northwestheast, southwest and southe&gjure 5).

NW. | N. NE.

SW. | S. SE.

Figure 5: Schematic representation of the neighbourhood topology, where cell ** is the active cell and
cells N. to N.W. are the cells in the eight wind directions.
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ClassMesh_2Dis a predefined topology defining neighbourhoothleen cells and is a subclass of
classTopology A Mesh 2D object is a two dimensional regular grid and ttiass contains a method
createMesh(**c, xDim, yDimyvhich automatically creates a mesh, of cells stamearray **c, with x-
dimensiorxDim and y-dimensioyDim, by defining all the relations between all thdsc#hat make

up this mesh. The edges of the mesh are boundhsaksannot be crossed; this in contrast to the
periodic boundary conditions, where the rectangsitaulation box is replicated throughout space to
form an infinite lattice.

Beside the eight neighbouring relations, therehacefurther relations: those which order cells in a
hierarchy. They are the INNER and the OUTER retetidA cell may be defined as being inside
another cell as well as being outside another Eell.example, in Figure 6, celisto d of lowest level
cells (levell) are defined as being inside c2ll, of the higher leve. In turn cell2b, together with
cells2a, ¢, andd are defined as INNER of ced. The other way round ce2d is defined as OUTER
of cells2atod.

3a 3b -
la| 1b

lc|1d

2a 2b)

3c 3d| 2¢ 2d

Figure 6: Schematic representation of the topological hierarchy, showing three hierarchal levels

4.2.2 Organisms

As stated earlier, at the conceptual level theeeao different categories of species: (1) thosg dne
immobile, i.e. the plants and invertebrates, andh@se that are mobile, i.e. the vertebrate specie
This conceptual distinction also influences theawgafe implementation and therefore implementation
of both species categories will be explained hepamately.

Plants and invertebrates

Immobile species are implemented into the model @smbination of (1) attributes of the cells that
make up the environment, (2yr@apstructure (from the C++ Standard Template Libranmy)l (3)
runtime formulas. Ecotopes are stored as an atitrifuevery cell (i.e. instance of classpoCel). In
the clas€Environment matrix, relating species’ presence to ecotdpestored in a C+map
structure. The plants and invertebrates are tluecin a combination of the cell attribweotope
and amapstructure.

Certain characteristics of plants and invertebratesdefined only as functions of other charadiess
and can thus be called only during runtime withregponding formulas. Such characteristics are for
example the standing biomass, defined as a funofienotope and date, or internal contaminant
concentration, defined as a function of the contami concentration in the soil. This limits the
amount of physical memory that is needed for sitraria This is important, because memory
increases rapidly with the size of the environnieihg modelled, e.g. the current study area is
represented by 223.440 cells.

Small mammals and top predators

All mobile individuals are implemented as instancetheir species-specific classes, such as class
WeaselKestre| etc. These classes are subclasses of Elgsandividua) which is a subclass of the
EcoSimclassindividual. Like the clas&nvironmentand its cells, the classdividual and its
subclasses are accommodated under 8esalationObjectAll objects thereby inherit the ability to
generate and consume events (see section 5.1e¥fi@ee 4for an overview of the class hierarchy.
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Individual

The protocol defined here is rather small: an iredial might (but not necessarily) be located irek ¢
and may move out of one and into another celhusthas a location is expressed by holding the
attributeCell, which has the attributescoordinateandy coordinate

Expolndividual

Expolndividualis the subclass of clabsdividual and it defines some important static, sucbkeasand
dynamic characteristics of organisms, suchgesweight development stagandinternal
contaminant concentratiorfror female individuals there are some extra Wégmrelated to
reproduction, such as the Booleamstureand pregnant

Besides the variables, all generic (i.e. non-spespecific) processes such as aging and growing are
implemented at the level &xpolndividual Age (expressed in days) ameight(expressed in grams)
are updated every day. Stages that are distinglisteetheveaning juvenileandadult stage Sexis
determined, simply by assigning either male or fereach with a 50% change.

Further the clasExpolndividualhas been added to implement the definition ohitv@e range of an
individual; each individual holds a (link to) adg@ExpoCellencompassing its home range area, to
facilitate it perceiving other individuals withihis range.

Species-specific classes: weasel, kestrel & woodsao

Individuals of the mobile species are instanceb@f corresponding species-specific class (eagpscl
WoodMouser Weasél. In these classes, all methods/behaviours, ssichoaement, reproduction,
daily activity patterns, etc., that are specifittie species are defined (see Chapter 5 for tlzaslet
and implementation of these behaviours). All spesjgecific classes are accommodated under the
higherExpolndividualclass which is a subclass of teeoSimclassindividual.
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5 Model Processes

In this chapter the different processes in the §paCE model will be described in more detail.
First the concept of a model process will be desdti If needed, the software implementation will
subsequently be described. If the implementatioa mfocess is merely the translation of a
mathematical formula in C++ code, its software iempéntation will not be described explicitly.

51 Time

5.1.1 Conceptual model

Time steps

The time step is the time span over which we igni@tails of temporal variation; instead, we conside
only the net change in variables over the entine tstep. Species exhibit different behaviours at
different time scales. During a day they conduttd¥®urs, such as sleeping, eating, moving, mating,
etc. The way they organise their day with differleahaviours is called their daily activity pattern.
Some species are nocturnal and hunt during the,nidgfile others are diurnal. In a food web based
model, it is important to take these activity patteinto account when modelling predator-prey
interactions. A mouse sleeping in its hole is ndifecult to catch than a rat foraging on the suda

A time step of one day is thus too coarse to adetyusimulate predator-prey interactions. An time
step of an hour seems more appropriate. It is d patance between incorporating sufficient detalil
and a limited simulation time.

Seasonality

Species show different behaviour during differexgsons of the year. For example, they have got
breeding seasons. Or vegetation has different tisraaailable for consumption. This seasonality
influences processes such as reproduction or fonglunption. Therefore the virtual time steps are
linked to a clock expressing time in hours, daysnths and years. Animals can thus behave
according to their seasonal habits. Individualsdfuee need to have notion of the day of the yedr a
of the time of the day.

5.1.2 Software implementation

Actions (or events) and schedules define an IBMdsleh of time. They determine which behaviours
of which objects are executed in which order, agithé the IBM’'s temporal resolution (Grimm and
Railsback, 2005). In thEcoSimsoftware these concepts are represented and iraptethby event,
schedulers in a so-called discrete event simulatpproach.

Processes taking place in real world systems grerinced as being continuous. Computers, on the
other hand, are inherently discrete, so continlo@lmaviour is usually approximated. A continuous
quantity such as time can be simulated using ds@guidistant increments - the smaller, the higher
the accuracy. This is known as discrete time sitimrgIskra 2005).

However, for many applications the continuous reatifrreal world systems is irrelevant, and can be
represented by a short series of indivisible evdris example, a simple operation of movement can
be simulated by just two events: the beginningemdiof the movement. The simulation can thus
optimise its operation by skipping the intermediatevement, since “nothing interesting” happens
then. The model no longer proceeds in time stepfdn event to event (Grimm and Railsback
2005). This is known as discrete event simulatlskré 2005).

Event

To implement the dynamics of a modetoSimcomprises some basic concepts of which events are
an essential concept. EventdHooSimare actions that make simulation objects carryagtivities,
called methods i€++, or change their state. Events consist of an bbjat takes notice of the event,
a time stamp indicating the virtual time when tkierd will take place, and some action (local method
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of the object) that will be performed after the mvieas taken place (Lorek and Sonnenschein 1999).
Objects just specify which events will happen, vwhould know about the event, and how to react
upon some event. All dynamic objects (e.g. indigidwor the environment) are accommodated under
classSimulationObjectso that they inherit the ability to generate aadsume events. The events
that are scheduled for execution are handled bgdhealled scheduler, the ‘engine’ of the simulatio

Scheduler

The simulation engine, implemented as the cid®edulerdeals with all the events being scheduled
by simulation objects and is responsible for thevaton of event methods. The simulation engine
defines the global virtual time which equals thealovirtual time of the latest event processed. The
simulation engine stores all registered eventsda ealled priority queue. If a new event is reagist

it will be inserted into the priority queue accarglito its local virtual time. The simulation engiwé!
always activate the first event from the priorifieathe last event is processed.

EcoSim contains two different schedulers, whichsaeclasses of claSsheduler

No conflict Scheduler

This scheduler can be used if no conflicts nedakteecognized. This scheduler always removes the
first event from the event list and activates tbgoa stored in the event to be carried out. It ndlt be
checked, whether there are more events in the égetitat have the same time stamp. The sequence
of object activations of events with the same tgt@np, which are stored in a scheduler or in its
priority queue, is not defined. In a simulationtwmultiple individuals, conflicts will certainly ese

and this scheduler therefore seems inapt for tlreFpaCE model.

Conflict Scheduler

Simulation objects, placed in the scheduler forcakag an actioifi.e. registered with the schedulgr)
might want to change their behaviour, when othastio carry out the same behaviour (or
something related) at the same time. For examipdepiedator wants to kill a prey and the prey want
to flee at the same time, it becomes apparenttiatrder in which these conflicting events are
executed is important and can have a significghtence on the results of the simulation. These
conflicts must be resolved. TiEeoSimplatform therefore offers a so callednflict schedulerwhich
must be used if conflicts must be detected andwedoConflicting events, which occur when the
same virtual time is specified for two or more eggtwo or more objects want to be scheduled at the
same time), can either be handled in a predefirmdhy the simulation engine or through the
programmer by installing a so called conflict resabbject (Lorek and Sonnenschein 1998). The
difference with a scheduler that does not recogoiadlicts lies in the way events are removed from
the event list. This scheduler first of all remoe#isavents with minimum time stamp. If there istju
one event, there is no conflict, and the eventbeaactivated. If there are several events, thedstbe
passes the list of all events with the same tiramptto aConflictResolverwhich returns exactly one
event that should be activated.

The clasConflictResolvers the base class for all conflict resolversslabstract and only defines an
interface, which all derived conflict resolvers madhere. A single conflict resolver is assignetht®
scheduler. AConflictResolveusually has just one function that can be called bcheduler: the
methodresolveConflict() As argument this function expects a list of eseimtEcoSimcalled
SimObjEventAs a return value this function returns a poihteran event which will be executed by
the scheduler. For the whereabouts of the remaieegts, this class is also responsible. The
remaining events can either be returned to thedstéeor deleted by th€onflictResolver So the
resolver gets a list @imulationObjed that want to execute an event as input and ieexactly one
SimulationObjecto be scheduled next. The event of SiisiulationObjectvill be executed and
removed from the event queue of the scheduler.

T A pointer is an identifier that holds the addreka core storage location of something of interasta data
item, table, or subroutine
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For two standard cases of conflict resolvitgpSimhas already implemented solution strategies
accordingly. They are modelled as the class@msfResFIFCand ConfResRANDOMwo subclasses of
classConflictResolver These are presented below.

Linear priority FIFO

The clasonfResFIFQwill always schedule the first task in the qudtialways returns the first
event in the event list to the scheduler, and netjister all other events unchanged in the schedule
again. This is according to the principle “first-ifirst out”. This is a form of fixed schedulingctions
occur in the same order each time step.

RANDOMresolver

The classConfResRANDOMIways selects one of the objects involved incthraflict, each with the
same probability. From the list of events, @enfResRANDONhus returns a random event to the
scheduler. It registers all other events again angid in the scheduler. This is called randomised
scheduling and can be useful for avoiding artefatfsxed scheduling (Grimm and Railsback 2005).

For a realistic simulation, the conflict schedd ®NDOM resolveseems the most appropriaféhe
Eco-SpaCE model applies the randomised scheduling.

Time with ecoDate

The clasecoDatehas been introduced to schedule events on a tiale expressed in hours, days,
months and years of the (Gregorian) calendar fihele the calendar time that corresponds to the
virtual time in the computer simulation. The fivéttual simulation step corresponds to a user @effin
date and hour or is set to the default (01 Jani@r at 01:00 hrs) and subsequent time steps
increment the time with 1 hour. Time step thusageécological meaning and this “ecological clock”
enables to simulate important ecological behaviandphenomena such as species-specific daily
activity patterns, breeding seasons, seasonaldeaithbility, etc. In the clasSimulationObjecthe
methodssimTime(JandsimDate()have been added to enable any simulation objezitjding all
individuals to access the ecological time and date.

5.2 Stochasticity

5.2.1 Conceptual model

A common use of stochasticity to induce variabilgyn creating the initial population of individsa

at the start of the simulation. Statistical digitibns for the individuals’ state variables can be
specified and the model then uses these distritmitio stochastically assign state variable valoes t
the initial individuals. The Eco-SpaCE model empglsych stochastic processes to simulate
variability in input variables, such as weight, agee.

Further, if the IBM’s rules are base on empiricdbrmation and there is sufficient data, it carubed
to formulate probabilistic rules (Grimm and Railsb2005). Behaviour in this case is not adaptive —
the individual makes the same decision with theesprobability no matter what condition it is in.rFo
example, prey preference can be modelled probbilisorder to mimic the observed food fraction in
the diet, or the movement behaviour can be modélechoosing from a probabilistic distribution a
direction for a successive step. For these casesra probabilistic distributions have to be
formulated in the model’s code.

5.2.2 Software implementation

Several statistical distributions are availabl&aoSim among which Normal, Binomial,
DiscreteUniform, Poisson, Uniform, and Geometrgtritbution. Depending on the distribution, only
parameter values such as the mean value and tlaasahave to be specified as input.

Two distributions have been added to the statidilwary. A discrete normal distribution has been
added, for example to determine the number of affgpA wrapped Cauchy cumulative distribution
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(WCD), a distribution used to model circular ddtas been added for the correlated random walk
algorithm to calculate the movement direction (S8 for more details).

5.3 Environment

5.3.1 Conceptual model

The environment is continuously changing; the bissnaf the standing vegetation, for example,
changes during the seasons. Animals also changesthéronment when they interact with it. During
this interaction animals need information abouirteevironment. However, avoiding unnecessary
complexity and long simulation times most environtaé characteristics are modelled as static in the
Eco-SpaCE model. Only the plants and invertebilates) in the environment are changing through
time. They are discussed in section 5.4.1.

Animals need to gather information from their sumding environment in order to adapt to the
changing conditions. Therefore, they continuouslyse their surroundings. Observations of animal
behaviour show that they respond to their enviramtrasing a combination of experience and instinct
(Robinson and Bolen, 1989). Methods have been rmgit¢ed to access parts of the (surrounding)
environment for retrieving the required information

5.3.2 Software implementation

To facilitate easy access for gathering informatibout the environment, some algorithms have been
introduced. An algorithngetRandomADWCellf)as been added which returns a random Cell in the
environment. And a more detailed algoritgetRandomSuitableCell(int Spegdiagich returns a
random suitable cell for a given species has bddadiand can be used to randomly place individuals
in the study area. Algorithms for accessing cella hierarchical different topology have been added
(getHighef) andgetLowerCell)). For sensing their environment within a certdistance, e.g. within
their home range, individuals can create a serdisignce sized cell around them. This facilitates a
easy deduction of information. For example, thay kiaow which other individuals are within this
distance.

An automated process of making a Home Range-aefirfondividual has been implemented,
createHRCell(Expolndividual*, ExpoCell’gnd an additional algorithm to check one of thenéo

range criteria, there must be sufficient suitalabitat within a home range, has been added,
neighbourhoodSuffices(int x, int y, int Speciemtfthreshold)

Because the environment consists of cells and ttedlseare accommodated under the class
SimulationObjectit is technically possible to change the envirentrdynamically by scheduling
events to change the cell properties. Howeverdpi®n has not been implemented in the Eco-SpaCE
model, for reasons of efficiency. The environmasrigists of many cells in the case of the present
study area and if these should be changed everfjodaxample, this would require a significant
amount of simulation time. It has therefore beewsein to, for example, get information about the
seasonally changing standing biomass by callingnatfon that describes the relation between ecotope
and date and returns the biomass of a certainespetthe first level of the food web (see section
Dynamics of level 1 organisms for further details).

5.4 Dynamics of level | organisms

5.4.1 Conceptual model

Presence

Presence of plants and invertebrates are basdw@uitability of a habitat for a certain specikso-
called habitat suitability index approach was fakal; this approach assigns each model cell a value
between zero (for unsuitable habitat) and oneq@ittable habitat) (USFWS, 1996; Ray and Burgman,
2006; Puruckeet al., 2007). For vegetation and invertebrates, habitaability was derived from a
map with ecotopes (i.e., spatial units that arerassl homogeneous with respect to vegetation
structure, succession stage, and main abioticraottevant for plant growth) (Klijn and Udo de KHae
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1994). This was done by assigning each ecotopeagpatability index of either zero (unsuitable) or
one (suitable) based on expert knowledge and titexaeview.

Growth

The standing biomass of the plants and invertelsiadeies representing the first food web levelegari
throughout the different seasons of the year. Bez#hese species serve as the food sources, and thu
as the source of energy and of contaminants, &hifher food web levels, it is important to addres
their seasonal availability as food to predatdris thus desirable that the dynamic supply ofehes
food sources is modelled dynamically.

The selection of a suitable way to model the dywarof plants and invertebrates in the Eco-SpaCE
model were based on four criteria. Firstly, theilabdity of the plant and invertebrate specieswdtdo

be cell specific. The Eco-SpaCE model’s environnenmade up of grid cells. Keeping a food
balance combining production and consumption andethed for each cell individually will cost

much CPU. So it seems better to model the avaihalpiér ecotope type. All cells within the same
ecotope get the same species availability. Secotititime step for which species availability is
calculated should be determined. The calculatediadizty depends on the period for which it is
offered. The food per day will be less than thedfper week. The time step for which the food supply
is calculated should be synchronous with the timehich the animals consume the food. Animals
consume food at a daily basis and thus the avhilabf food specie should also be calculated at a
time step of one day. Thirdly, the dynamic modelimust describe seasonality in food supply.

Some earlier models addressed the growth and hiligjlaf several plant species in different ways.
Three models described the (re)growth using lagfstictions. Logistic growth is based on the
assumption that all food should be newly formedwNeaterial also leads to faster growth. Logistic
growth, for example is seen with colonies of mi@ebRegrowth is based on the assumption that there
is a quantity of non-edible base material whicligeto a more or less constant regrowth. An example
would be the stem, branches and roots of a treékelleaves are eaten, energy from the available
material is mobilised to produce new leaves. Tlosvi rate is constant and depending on the size of
the stem, branches and roots. The model FORGRArdfsmaet al (1999) describes the growth of
herbaceous vegetation in forests as a functioigbf intensity. It is a logistic growth function.

Turchin and Batzli (2001) and Owen-Smith (2004)ctié®d logistic growth and regrowth with the
following functions:

av _ vV (Logistic growth) 1)
dt K
‘jj_\t/ _u K-V (Regrowth) (2)

whereV is the biomasgj is the rate of growth af at near zero, and is the maximum biomass in the
absence of predatiob. is the initial regrowth rate (& near 0). They incorporated seasonal
dependence by making the parameters u and U depterridéhe season.

On the basis of empirical (historical) information fruit production and climate (temperature, snow,
hydrothermal ratio, sun intensity, etc.), SelaO@aeveloped a multiple linear regression model.
This regression model describes the variationdit froduction as a function of climate. For such a
exercise, empirical data are therefore requirech fiflve same or similar area. Satake & Bjgrnstad
(2004) described a resource-based model that Bescseed production as a function of energy input.
Reuter (2001) used a cyclic function to descrileestasonal variation in food supply. He therefore
employed a periodic sine function.

At this stage keeping a food balance is infeasiblech make all differential equations unsuitatde f
use in the Eco-SpaCE model. After all, the difféisdrequations by definition use the food availadiie
timet to calculate the food supply at tirtel. That applies for the logistic growth functioneth
regrowth function, resource-based modelling andstaggrowth under the influence of light. In effec
this means that you choose not to model the presesschanistically (for example, by means of
positive feedback and feedback processes) but tehilbem descriptive. You go in search of a
mathematical function that best describes the fon¢hat you observe or expect in the field, withou
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explaining the observed patterns. There are theroptions, namely a multi linear regression model
or a cyclical function as uses Reuter. A specégression model for ADW is not feasible because the
necessary time sequences are missing. Therefgidia function describing the seasonal variation in
food supply will be implemented in the Eco-SpaCHlgio

The growth dynamics of plant and invertebrate sseare defined as an external driving force.
Growth is not included explicitly as a processhia model; rather, the resulting availability of a
species is implemented as a function of the seasdrof the ecotope, to account for temporal and
spatial variability, respectively.

Resource availability of a specied(species, ecotope, season)

Season will be expressed as month (1-12) or mdedleld day of the year (1-365; combination of
month and day). The ecotopes are all the ecotaesemt in the study area (1-30). The species are th
species of the®1food web level, such as earthworms, grass, spidars

The biomass of the plants and invertebrates sew#ise resource that is available to the higheit foo
web level species in seasonal fluctuations. Thedatg biomass is simulated with a combination of
two sine functions, one the growth phase, whichigsrthe growth of the standing biomass from
minimum to maximum biomass and another for theideghase, simulating the seasonal dies off of
the biomass (Figure 7). Die off of biomass of plamd invertebrates species caused by predation is
not simulated explicitly; it is assumed that thisricluded in the function simulating seasonal lziem
variation.

Seasonal resource availability

End Begin
growth decline
777777777777777777777777777777777777777777777777 «— Maxmum
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Figure 7: Schematic graph of sine function describing the seasonal resource availability, with input
parameters minimum and maximum biomass, begin and end growth, and begin and end decline.

The formulas for biomass at timeluring growth phase =

Bmin + Bmax + Bmax' Bmin xsin t>50 + P x 27375- 182'5>Gstart , (3)

2 2 Gend - Gstart 1825 Gend - Gstart

and for the biomass at tim&uring decline phase =
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Bmin + Bmax + Bmax' Bmin xsin t>$0 + P x 91 25- 182'5><Dstart (4)

2 2 D Dot 365 1825 D D, +365

end - “start end - “Ystart

whereB,,nis the minimum biomas&,,.IS the maximum biomass&:is the date the biomass starts
to grow, Gqis the date the biomass growth ends,{¥ the date the biomass starts to decline, and
Denqis the date the biomass decline ends.

Metal accumulation
The calculation of the internal contaminant coniidn in the species depends on whether it
concerns species of the second food web levels(neall mammals consumed by top-predators) or the
first food web level (i.e. plants and invertebrateasumed by small mammals or top-predators). For
the plants and invertebrates, the internal contantinoncentration can be derived directly from soil
concentrations, by applying bioaccumulation fac{&A&Fs), according to equation 5, or log-linear
regression equations relating the contaminant edretion in the soil to the internal concentration
the accumulating species, according to equation 6:

IC;; =C

i soil

xBAF X1 -MC), or (5)

IC, =axG,," & MO), (6)

whereC, 4 is the contaminant concentration in soil in cef mg-kgl dw, BAFis the
bioaccumulation factor (dimensionlesB)C is the moisture content of the accumulating sggecie
(dimensionless), analandb are regression coefficients (dimensionless).

5.4.2 Software implementation

First food web level organism individuals are reytnesented as objects, so it is not possible tplgim
query a certain state, such as available biomassgevnal contaminant concentration, of an indiadu
from this food web level. Rather, if a predator vgaio obtain the state of a level 1 prey species, i
calls a corresponding function that calculatesstage during runtime, by retrieving parameter value
from databases stored in the program and makingebessary calculations.

Seasonal availability of level 1 organisms

The biomass parameters (minimum and maximum bignbaggn and end of growth and decline)
specific for each ecotope and each first food veeBllare stored in structdata structure
accommodated in th@apstructure that represents the ecotope-speciesxmatr

The function that returns the amount of biomass lefvel 1 organism that is seasonally available has
two input parameters, namely prey species anddhéoc which to calculate the availability. The
season is implicitly obtained within the functiomdethus does not have to be passed on as a
parameter.

Metal accumulation

Parameters for accumulation of different contamisane read from separate input files for each
contaminant, and are stored in tatoucts(ContaminantsFactandPreyFact3, which are
accommodated in the claBgpolndividual

5.5 Dynamics of level Il and Ill organisms

Individuals of the second and third levels of thed web (small mammals and top predators,
respectively) are represented as objects (instasfdéeir corresponding species class), which have
certain state variables (weight, age, developntages etc.) and possess a variety of methods that
carry out specific behaviours to change their std@ure 8 shows a schematic overview of a

27



vertebrate object, with its state variables anchos and its relation with other actors. By the msea
of their behaviours animals become adaptive creaturhey are able, for example, to adapt to their
changing environment by moving. Or they can chahge behaviour by foraging when hungry, or by
reproducing when adult and in breeding season|retbe following section the principle dynamics of

these species group will be described.
Predator

ﬂ/ertebrate \
AGE | | MORTALITY |
[WEIGHT}/[

JuvenilesII -‘REPRODUCTIONH ENERGYJ

MOVEMENT
Habitat Food

Figure 8: Schematic representation of a vertebrate modelled as an object with states (age, weight,
energy, internal contaminant concentration) and behaviours (movement, food intake, reproduction,
mortality) and its relation with other actors

internal
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- )

5.5.1 Aging

Conceptual model

Age is updated every day, for all animals thatsditeliving. They will grow until they have reactie
their maximum age, unless some other stressors,asupredation or starvation, cause them to die
earlier.

During their lifetime individuals go through diffemt development stages. Individuals can transfar to
succeeding development stage when they reachrcades (or certain weights). During each
development stage, individuals carry out diffedeglhaviours. For example, individuals can only
reproduce during the adult stage. Or they staadiog (independently from their mother) when they
reach the juvenile stage.

Software implementation

At the end of the day all individuals are schedutedpdate their age with one day. In the meantime
they will update their daily foraging history: th@del calls the method®nsume(andaccumulate()
to calculate how much energy an individual assimialuring the day and how much chemical
stressors it accumulated.

5.5.2 Growth (& energy balance)

Conceptual model

An individual grows during their simulated lifetimiey gaining or losing weight. Whether it gains or
loses weight depends on the amount of energy iga#tmer during a day. It can obtain this energy
from the food it eats during foraging.
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Dynamic Energy Budget

In order to implement growth in the model, a dymaaniergy budget (DEB) has been developed.
The dynamic energy budget has been set up confarfollowing criteria:

1. Somatic growth (i.e. increase in body tissue) sthyal ecologically realistic.

2. Starvation should be an emergent property

To meet the first criterion, somatic growth shoafgproximate optimal growth curve. The Von
Bertalanffy growth equation fitted mammalian growtirves best, together with Gompertz growth
equation (Zullingeet al, 1984). To meet the second criterion, weightéase and decrease should
also be modelled as an emergent property. Thideathieved by directly coupling it to food intake.
In this way, the importance of starvation can bargiied in relation to other stressors.

The major potential components of daily energy exlitere are expenditures associated with (1)
standard or basal metabolism, (2) assimilationudfients (specific dynamic effect or calorigenic
effect of food; Kleiber 1975), (3) thermoregulatiga) production (growth, storage, reproduction),
and (5) activity (Kasarov 1992). The first threengmnents can be classified as maintenance.
Production or growth can be subdivided into somgrtosvth (or production of new tissue) and
reproduction.

Maintenance

The energy expenditure for maintenance and averageal daily activity is modelled as the field
metabolic rate (FMR). FMR includes the costs ofabasetabolism (BMR), thermoregulation,
locomotion, feeding, predator avoidance, alertngssture, digestion and food detoxification,
reproduction and growth, and other expenses, thatately appear as heat, as well as any savings
resulting from hypothermia (Nagy, 1987). FMR is aiféeed for all the species using allometric
relations derived by Nagy (1987, 1999), who babkedestimates on doubly labelled water
measurements of G@roduction in free-living animals. FMR is assuntecqual the energy
requirement for maintenance and basic activitiesiamveight dependent according to the species-
specific allometric relations. Growth is not assdn@be included, because FMR values were
primarily based on adult individuals. Reproducti®@also assumed not to be included (see Section
Reproductioh The formula for the energy required for maintese(including average daily
activities; Emaintenancy Will then be:

E = FMR = a5 Xm™= )

maint enance

whereFMR is the field metabolic rate (KJ-ddy mis the weight of an individual (g) argys and
brvr are species-specific parameter values for the fredtabolic rate.

Growth

Growth consists of two categories, namely prodmctibnew tissue (somatic growth) and production
of offspring (reproduction). They will be describseparately in the following section.

Somatic growth
Weight increase at timds modelled as:

weight,, = weight + somaticgrowth (8)

Westet al (2001) developed a general model for ontogeh@iitsomatié) growth based on
biological mechanism (equation 9). It is a quatiti|amodel based on fundamental principles (Brown
and West 2000, West al. 1997, 1999) for the allocation of metabolic eydsgtween maintenance of

* Ontogenetic development is the development ofrgardsm from the fertilized egg to its mature form.
8 Somatic growth is growth of cells forming the bazfyan organism.
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existing tissue and the production of new bioma@ks.imbalance between supply and demand
ultimately limits growth.

. dm 4 m ¥4
somatlcgrowth(ngay'l):a:a>m3/ 1- ™M (Westet al, 2001) (9)

where m = weight of individual (g), M = adult weidlg), a = 4>k XV Y (derived by combining
formulas from Weset al 2001 and Bertalanffy 1951), k = postnatal grovetie constant (d&y.
From equation 9 we can derive a formula (equat@nfdr the daily energy required for growth
(Egrowtts KJ-day"), if we know the energy cost to produce 1 gramef tissue ECissus KJ-gY).

%

E oun, = @XM 1- XECcier (10)

growth

m
M

where the calorific value of tisSUEQ;ssy9 iS calculated by the summation of the caloridue of fat
tissue and the calorific value of protein tissuatree to their percentile fraction of the body wjei.
Although the weight percentages of fat tissue anten tissue in the whole body slightly change in
growing individuals, they are assumed static at {d%rage of values for mammals reported by Pace
and Rathbun 1945) and 15% (deduced from data pgexbbg Robbins (1993) for lemming, vole and
mice species), respectively. The anhydrous bodgridtprotein for fat tissue is average 9.11 kéal-g

or 38.1 KJ-g and 5.42 kcal{pr 22.7 KJ-d, respectively, in wild birds and mammals (Odeinal.

1965, Bakeet al 1968, Sawicka-Kapusta 1968, Barrett 1969, Eveingl. 1970, Johnston 1970,

Pucek 1973, Fedyk 1974, Robbetsal 1974, Kaufman and Kaufman 1975, Stirling and MaBw

1975, Clayet al. 1979).

In order to grow following the ideal species-speaifrowth curve, the daily required (and therefore
desired) energy intak&gquirement KJ-day') at weightm would include energy for maintenance and for
growth (and additionally, for breeding animals atr&amount of energy for reproductideproduction
KJ-day"):

Erequiremen = Emaintenane + Egrowth + (Ereproductbn) (11)

Food intake

When an individual wants to grow according todsal growth curve, its daily energy intak2H];
KJ-day") multiplied by the assimilation efficiency of eggrfrom food AE; %) should equal its
required energy intake at weight Assuming a priority of energy to maintenance,fbgion of
energy devoted to somatic growth equals to:

Somatiogrowth(ahy/at) = DEI™ AE- Emaintenane (12)

Ectissue

For each species AE is calculated from predatoy-ppecific assimilation efficiencies assuming an
average diet composition using data from the litgea The actual daily energy intake, ideally egoal
the daily energy requiremert {yuiremen), iS confined by energy available from food gagiuer
(Eavailaviity; KJ-day') and the species-specific maximum daily intake @El . KJ-day'). DElpaxis
calculated using an allometric relation betweernvtbght of the species and the maximum
metabolisable energy intake, derived by Kirkwoo8d3d).

b

DElpax =a>xm (13)
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where m = weight of individual (g), a = 11.84 and B.72 (Kirkwood 1983).

Reproduction allocation

The allometric relations between body weight amdRMR, used to derive the FMR values for the
ADW species, are average values. But animals dfsee different metabolic rates at different times
of the year and metabolic rates are known to hafgigntly higher during the breeding season, when
adults breed and raise their offspring. After mation, reproduction is assumed to be fuelled by
metabolic scope where metabolic rate is increaseeral fold above the resting level to fuel acibst
related to reproduction (Peters, 1983). For exapiéesmaret al (1986) showed that for the
common kestrel, females had the highest energiardaring egg-laying (an elevation of 35% above
the winter level), and the males reached a maxinmnutime nestling phase (52% above winter level).
Reproduction is thus not explicitly included in fRIR. Therefore FMR will be increased when
reproduction plays a role. The FMR (and consequexsio the daily energy requirement) will be
increased by a species-specific fixed percentage 38-52% for the kestrel).

Software implementation

Energy transfer between prey-predator and weig/laaig

The equations describing the dynamic energy budaet been implemented in the program code. An
individual can consume food during the whole fonagperiod of the day. If a prey is eaten the amount
of energy of the prey is calculated from its biomasd its caloric value and the part that is
metabolisable is then transferred to the pred&uoly at the end of the day the energy balance is
calculated and from the energy level consumeddéagthe weight of the individual is also updated
every day. Finally, the energy consumed is sekto again for the next day of foraging. The dynamic
energy budget is thus calculated at a time stemefday.

5.5.3 Accumulation

Chemical stress from contaminants, such as heataisnés one of the stressors modelled in Eco-
SpaCE. In principle, the same relations will beduag in the spatially explicit exposure model
developed in the Visual BaSidevelopment system Application (Loetsal. 2006). Basically, only the
time resolution at which the accumulation is cadtedl differs from the preceding model. Here, the
basic principles will be discussed briefly; pleaster to Looset al. (2006, 2008) and Schippetr al.
(2008) for more details.

The internal contaminant concentration of a smalimmal consumed by a top predator is calculated
according to a more mechanistic approach. Likegniewvels and weight, internal levels of
contamination are updated every day. Small mamaralgop predators predominantly accumulate
metals via ingestion of food (Huntet al, 1989). The internal contaminant levels are tlogeef
calculated from the food eaten that day. The awecagcentration in food is calculated and daily
absorption and excretion rates are applied to ohéerthe daily uptake.

Contaminant concentration in food is charactersedmmation of the internal contaminant
concentrations of all the preys, relative to tluiét fractions, eaten in one day:

prey=n

Cfood - xf (14)

prey=1 prey prey ?

whereCi,q is the dietary contaminant concentration in k'g'd fresh weight foodlC,.y is the internal
contaminant concentration in prey item in kg fw food, andf,., is the dietary fraction of prey item
(dimensionless). The fraction of prey in diet iseanerging property, depending on which preys are
available to the predator at its location, whictaBmammal preys a top predator will encounter and
the preference for certain preys.

The contaminant uptake rat@) of a small mammal is described as a functionsofdeding rate

(FR), its contaminant absorption efficiengy), and the contaminant concentration in its di.f):
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R = FRx >C, . withFR= %, (15)

whereR, is contaminant uptake rate of the diet in mg-kg body weight day, FR s the feeding rate
of the predator in g fw food 'gw body weight day, ki, is the absorption efficiency of the
contaminant (dimensionles€),.q is the dietary contaminant concentration in mg-kg food, DFI is
the daily food intake in g fw ddy andBWis the body weight in g fw. The elimination rai.) is a
function of the elimination rate{,) of the organism and the individual’s internal @minant
concentrationlC), and is given by:

I:'2out = kout ><IC:predator’ (16)

whereR,,: is the contaminant elimination rate in mg‘*kfgv body weight da')]/', kout IS the elimination
rate constant in dz‘iy andICpyredaror Is the internal contaminant concentration in thedpator in mg-k‘é
fw body weight . The uptake from the concentratiofood is a balance between assimilation and
excretion of the contaminant by the predator. Ttheschange of the internal contaminant
concentration in time is calculated by the differeibetween uptake rate and elimination rate:

dI_C = FR)4<1n >(:food - kout xC

dt predator? (17)

wheret is the time in days.
The internal concentration of the predator, modedls a receptor, is calculated each day, using the
following discrete formula:

ICt = ICt-l + I:R>4<in >Cfood - kout ><|Ct-1' (18)

wherelC; is the internal concentration of the predatoragttdn mg-kg' fw body weightCioeqis the
concentration in the food eaten by the receptdagt in mg-kg* fw food, andC,, is the internal
concentration of the predator at the previous dayg-kg" fw body weight. Equation 18 is applicable
to non-essential metals (such as cadmium). Fongabkmetals (such as zinc) the same function can
be used, were it that the parameters for the bioaatation kinetics (k and k) are dependent on the
contaminant concentration in the food (L&tsl 2008).

Contamination flow from mother to juvenile is natydetermined.

5.5.4 Mortality

Mortality is caused by four principle factors, ndyngtarvation (energetic stress), toxicant exposure
above threshold value (chemical stress), predanohaging.

Starvation

In 1684, Redi (1684) observed that during starvelwge animals survived longer than small ones.
This was probably the first evidence that a biatabduration, survival time during starvation, was
mass dependent. Redi’s observations were confirm&820 by Naumann (1820), in 1828 by Collard
Martigny (1828), and in 1843 by Chossat (1843). [Blaeof Chossaf1843, in Kleiber, 1961) states
that animals which are starving catabolise abolfitdfiaheir body weight and then die. In other werd
death occurs in starving individuals when body nsggsroaches 50% of the initial, unstarved mass.
Adams (1999) clarifies the 50% rule as the pointlath a starved fish depletes the usable portfon o
its body energy (mainly triglycerides), leaving yphospholipids, protein and small amounts of
carbohydrates. Starvation-induces mortality liketgurs once all triglycerides have been exhausted
(as well as any proteins and carbohydrates) ahdgin to use phospholipids as an energy resource
(Adams 1999). This is because the breakdown oheefhbranes, which are comprised of
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phospholipids, has severe biochemical and physimdbgonsequences. Wetzel (1925) found a
maximum relative weight loss of 51.5 + 0.613 %gieons subsisting on water alone. Tde of
ChossatKleiber, 1961) will be applied in the Eco-SpaCBEdul to determine whether starvation
occurs.

Toxic exposure above PNEC

To incorporate interindividual differences, for ewéndividual its lethal concentration for a certai
contaminant is determined, ranging between thei&@estiNo Effect Concentration (PNEC) and the
Lethal Concentration for 100% of the individual€CQ100), following an appropriate probability
distribution, e.g. lognormal. At this stage theenimdividual differences are, however, not linked t
their physical conditions. For every modelled caniteant, the Predicted Exposure Concentrations
(PECs) are compared with the determined individethlal concentration. If the PEC rises above this
value, it dies and will be deleted from the simiolat The cause of death will be set to “toxication”
So, at environmental concentrations below the PN&@®dividual dies and at concentrations above
the LC100 all individuals will die.

Predation

Death caused by predation only applies to the skl of the food web (i.e. the small mammals).
Within the food web modelled, the species of ldhete (top predators) are not preyed upon.
However, badgers and weasels are sometimes knoeat @ung birds. Therefore, juveniles of the
bird species might in the future be included ay ppecies.

Predation is modelled as an emergent property,rifépg on encounter and on prey preference.
Therefore, death caused by predation is also angemeproperty. If a prey species is caught by a
predator, the specified object, representing thgleeprey item, will be deleted from the simulation
For more details on predator-prey relations setoseb.5.6.

Aging
Species-specific maximum recorded ages have bekargd from literature. These will be used as
absolute maximum and individuals will die if thesach this age.

5.5.5 Movement (organism-environment interaction)

Conceptual model

Habitat quality

Movement is the fundamental method by which mohilenals respond to changing environmental
and competitive conditions. Spatially explicit imdiual-based models (IBMs) use movement rules to
determine when an animal departs its current lonaind to determine its movement destination.
These rules generally compare locations using soeasure of an individual's expected fitness.
Giving an individual simple fitness-maximizing dgioins rules, and the information about its
environment necessary to predict decision outconascause many realistic behaviours to emerge
naturally (Railsback 2001, Railsbaekal 1999).

As a fitness-maximizing rule, the Eco-SpaCE modslianes that an individual will tend to visit
habitat with greater suitability more often thasdeuitable habitat to increase its chance ofrigdi
food and/or shelter. Therefore the suitabilitylo# habitat needs to be known for every species
modelled.

The habitat suitability index approach is used,clvhis similar to the approach used to determine the
presence of plant and invertebrate species. ttia®laeasurable environmental variables (vegetation
type) to the suitability of a site for a speciesasgigning each ecotope a value between 0 for
unsuitable habitat and 1 for suitable habitat (US;W096; Ray and Burgman, 2006; Puruceiesil.,
2007). For all predator species (level 2 and deffood web modelled), the habitat suitability afedi
was assumed to depend not only on ecotope suiyaffili= unsuitable, 0.5 = marginal, and 1 =
suitable) but also on the availability of food (atian 19). Food availability for a specific specress
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derived from the cell-specific habitat suitabilibdices for its respective diet items, whereby the
habitat suitability index of each diet item was ghged according to its contribution to the receptor
species’ diet (equation 20)

HS = ES A (19)
FA =(f; 4HS) (20)

whereHS = habitat suitability of cell (dimensionlesskS = ecotope suitability of cell
(dimensionless)-A; = food availability in cell (dimensionless); = dietary fraction of diet item
(dimensionless), andS; = habitat suitability of cell for diet itemj (dimensionless). The resulting
species-specific habitat quality is used for definthe individual's movement through the landscape.
Given a certain habitat quality at the (surrounjliogation of an individual, rules defined in
movement algorithms determine how and where thigicghahl moves to.

Movement algorithm

Criteria used to develop and implement movemerdrahgns in the Eco-SpaCE model were twofold.
First, it should be relatively efficient in termsammputer processing (fast simulation). Seconidlly,
should contain some level of realism; ideally hibsld closely mimic the movement patterns and/or
spatial pattern use observed in the field of thexigs in question.

Several movement algorithms have been defined amghatentially be applied to all the mobile
species in the Eco-SpaCE model. The current moveabgorithms include Biased Random Walk,
Correlated Random Walk (CRW), Random Flight witHiome Range, movement to a random cell in
random neighbouring cell of a hierarchal higheelev

Biased Random Walk

A random walk model is a formalization of the ititeeé idea of taking successive steps, each in a
random direction. Thus, they are simple stochgsticesses consisting of a discrete sequence of
displacement events (i.e., move lengths) sepalstatdiccessive reorientation events (i.e., turning
angles). The statistical distribution of displaceftriengths on the one hand, and the statistical
distribution of changes of direction (i.e., turniaggles) on the other hand, describe the stochastic
process (Bartumeus, 2005). The simplicity of paredom walks is methodologically attractive
(Kareiva, 1990), but such search strategies reswidundant paths (Bovet and Benhamou, 1988) and
may not be applicable to behaviourally sophistidateimals (see, e.g. Turngrral, 1993). To make

the movement pattern more realistic the pure rangatk can be changed in so-called biased random
walk. Again the direction of a successive ste@iglomly chosen but with a bias towards more
suitable habitat.

Correlated Random Walk and Lévy Flights

Many simulations use correlated random walks (CRW#gduce the redundancies of pure random
walks and simulate more realistic movements (élgtfman 1983, Cain 1985, Haefner and Crist
1994, Schipperst al 1996, Schumaker 1996) and they have been adjsstaeéssfully to a wide
range of empirical data (Kareiva and Shigesada ,1B8%et & Benhamou 1988, Turchin 1991, Crist
et al 1992, Johnsoat al. 1992, Bergmaet al. 2000). While methods to quantify space use, sisch
correlated random walk (CRW) models, have becomestl standard in invertebrate studies (Root
and Kareiva, 1984; McCulloch and Cain, 1989), aelyently have they been applied to large
mammals (Bergmaet al., 2000; Fortiret al, 2005). One study was able to explain individual
variation of grey sealdHalichoerus grypuswith CRW-based models (Austat al, 2004),
demonstrating that spatial concepts developedieraaxonomic groups, such as invertebrates, can be
successfully applied to carnivore studies.

Other simulations use Lévy flights (LF; Viswanatteinal. 1996, Levandowslat al. 1997, Atkinson
et al 2002, Bartumeust al 2003, Ramos-Fernandetzal 2004). Recent works have fitted field data
of specific species (Maredit al, 2002; Austiret al, 2004) by using both models. All these studies
have shown that CRWs and LFs can be used as fiitimgedures to analyze animal movement.
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A correlated random walk functions like a randontkyhut the turning angles between successive
moves are not statistically independent, resuiting straighter movement path (Johnstal, 1992).
CRW models control directional persistence (i.e.dkegree of correlation in the random walk) via the
probability distribution of turning angles by chamgthe shape parameter of the distribution applied
(). Often the wrapped Cauchy distribution (Batschhdl®@81; Haefner and Crist, 1994) is used as the
probability distribution. In the Eco-SpaCE modaelsimulations for CRWSs, for each new step of
movement the turning angles (i.e., deviations ftbenprevious direction) are selected from a wrapped
Cauchy Distribution (WCD) (Batschelet, 1981; Haefared Crist, 1994). The WCD distribution is
sampled by using the inversion method, i.e., tyi@ingle deviations are generated from the WCD by
inserting a uniform random variable, Q< 1, into the inverse of the cumulative distributfanction.
So, the angle deviationfrom a preferred directiofi is obtained from

g = +2>xarctan :1L+—r xan px u- % , from (Bartumeust al, 2005) (21)
r

In the calculationd’ = 0 is set, so the WCD accounts for the tendenseived in many organisms,

to go straight forward. is the shape parameter of the WCD, which consiolgosity, and to that
extent, diffusiveness. The relative straightneshefCRW can be changed by varying the shape
parameter. For = 0 we obtain a uniform distribution with no cdat®on between successive steps,
thus Brownian motion emerges. For 1 we get a delta distribution dtl@ading to straight-line
searches. The length of the step in a CRW is ndyrfiaéd.

One can also use movement algorithms that varyessogee movement lengths by drawing them from
a distribution (e.g. lognormal; Schtickzedleal. 2007). Lévy flights models simulate movement by
varying the move lengths (i.e. the so-called flgyhtn this case, the turning angles are selected f
uniform distribution and move lengths (flight) frqpower-law distribution P{l I, (Viswanatharet
al., 1999). The exponent of the power-law is callegltévy index (1 < 3) and controls the range
of correlations in the movement. LF thus compresegh variety of paths ranging from Brownian
motion ( 3) to straight-line paths ( 1). The length of the successive step is calculayedserting
a uniform random variable, Ox< 1 into

-1
| =1, xu® ™" from (Bartumeus, 2005) (22)
wherel i, = the minimum length of the step= the power-law exponent or Lévy index
Lévy flights (LFs) are more efficient than corredtrandom walks (CRWS) in searching targets. As
density of targets diminishes, LFs become even refficient than CRWs (Bartumeus, 2005).
There is a small side mark to the Lévy flight, hgei because it has to be limited by a maximum
distance as well. Within a fixed time step, anwudlial would be capable of travelling only a lindte
species-specific distance, whereas the outconteeafdquation for the Lévy flight (equation 18) ramge
from I min
Both the CRW and the LF movement algorithms casdb@lependent of the habitat suitability, so to
give individuals the adaptive trait of visiting ®ble habitat more frequently than less suitablétag
this in turn to maximise their fitness. In the CRWorithm, if the shape parameteis set closer to 1
for less suitable habitat and closer to O for flgtdabitat, an individual will tend to move stiaigr in
less suitable habitat, enabling it to eventuallyape this habitat, and it will tend to turn a lot i
suitable habitat, leading to a small displacemmiitgicking it to stay in this habitat. Parallel,time LF
algorithm, for example, giving an individual thetiency to escape from less suitable habitat, can be
achieved by a rule such as “the lower the habuatity, the higher the probability for longer
movement lengths”. Further, combinations of the tmamvement approaches are also imaginable.

Random Flight

Random flight refers to an algorithm implementedcally for birds. It assumes that with every next
foraging step any cell within a certain range (B@ne range) can be reached, without interactiom wi
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the in between laying environment. Any suitablé wéhin the specified range is selected
successively, either with every (suitable) cellihgvan equal change (random) or where more suitable
cells have higher changes of being selected namtl¢m biased).

Starting cell

Initiation

At the beginning of the simulation, before theialitndividuals start to move, they need to be ethc

in the simulated study area. They are placed ipadled starting cells, from where they begin to

forage when the simulation is activated. Theseistacells can be chosen using the following

options:

1. A cell with coordinates (x,y)

2. A cell randomly chosen within the study area

3. A cell randomly chosen within habitat suitable floe species of concern

4. A cell randomly chosen within suitable habitat aodtaining enough suitable habitat within the
surrounding area that covers the size of the hameger specific to the species

For certain simulation scenarios, placing indivigua specific predefined cells (with known
coordinates), the first option might be useful. lo@r, when simulating a possible realistic scenario
the fourth option seems the most realistic optidns option is therefore implemented as the default
option.

Offspring

For placing new individuals, offspring that are dduring the simulation, one can apply the same
options mentioned above. It seems commonsensiaiiha starting cell of an individual should be the
same as the cell its mother was in at the timardi.brhis can easily be implemented by choosing
option 1 (the coordinates of the mother are knowowever, if there is too many offspring born in a
small area, the density could increase to unré@aliggh levels. In real life, these offspring woulen

be forced to disperse to less densely inhabitegisaf2ispersion has not yet been implemented and
therefore, like the initial individuals, the defaaption for new individuals is currently set totiom 4.

Home range

After an individual has found a starting cell, ieates a home range around this position. The
succeeding movements of this individual are tharfined to this home range. This can either be
achieved by a strict boundary (bouncing) or byaes boward the centre of the home range. In
combination with a Correlated Random Walk (CRW)|dtter option is called a centrally biased
CRW. The strict boundary option is imposed behaviathereas from the centrally biased CRW a
behaviour emerges that will make an individual stéhin its home range. In the current version of
the model, a strict boundary is implemented andiegpBesides the use of the home range for
confining the possible movements, it can also leel fier determining the sensing distance (see sectio
Sensinyand interactions with other individuals.

Sensing

In order to respond to the changing conditions theye to be able to sense their environment.
Specifying the distances over which individuals sanse can be one of the most important factors in
an IBM’s design. Underestimating this distance sawverely and unrealistically limit the ability of
individuals to adapt (Grimm and Railsback, 2005).

To specify the distances over which the ADW spec@ssense, study results from Swiledral

(1988), who related body size to the rate of hoamge use in mammals, were consulted. Swistart

al. (1988) calculated the time required to traverbBerae range during the course of normal
movements (TTI; time of independence) for 23 seofanammals ranging in body mass from 30g to
70 kg. TTI represented the time interval at whinkaaimal’s current position was influenced only by
its pattern of home range use, not by its positibminutes earlier. Thus, TTI was the minimum time
interval over which an animal could occur, in al@bilistic sense, anywhere in its home range. For a
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species, movements were monitored either by rediotry or direct observation. Observations were
collected only during periods of activity. A distiion was made between croppers if they were
primarily herbivorous (grazers, browsers) and hunifethey relied primarily upon foods such as
seeds, fruits, or mobile prey, after McNab (19&3)ecies also were categorized as central place
foragers (CPF) or non-central place foragers (nBR)C

The relation between body mass of hunters andfadteme range use, TTI = 1898*° was

significant (R = 0.79, P < 0.001). For all non-central place dgersspecies, regardless of diet, TTI =
354M°2%(R? = 0.50, P < 0.01). If we calculate the TTI, caétat in hours, for the ADW species, we
get the following values (Table 3):

Table 3: Home range use calculated for ADW species

Species group Body Mass (kg) Home Range (ha) TTI (hour)
Microtus arvalis non-CPF cropper 0.018 0.02 2.4
Sorex araneus hunter 0.008 0.05 0.2
Clethrionomys glareolus  hunter 0.018 0.15 0.3
Talpa europaea hunter 0.095 0.21 0.8
Apodemus sylvaticus hunter 0.016 0.22 0.3
Oryctolagus cuniculus non-CPF cropper 1.732 3.11 6.7
Mustela nivalis hunter 0.077 14.70 0.7
Meles meles hunter 10.010 74.83 7.7

Within one day (i.e. the time the individual forage catch and consume its preys) assuming a
foraging period of maximal 8 hours per day, allces can potentially visit their whole home range
according to Table 1. Therefore, the sensing rafgee foraging animals is set at size of the home
range. However this only applies to sensing othalite preys. The presence and biomass of the plant
and invertebrate species are defined at the rémolof the cell size and they can thus only be sgns

at the cell size level.

Software implementation

Presence & Habitat Quality

For easy and logical extraction of the relation&bimation, the ecotope-species matrix, containing
information about the suitability of each ecotopedvery species modelled, has been stored in the
container class map, a data structure availaktleeirstandard Template Library (STL; C++ library).

Walk algorithms

A basic movement step is executed by calling tinetfan moveToCell(with the destination cell as
input parameter. For a pure random walk, neighlnguzells can be accessed by the method
getNeighbourCell(ith the current cell and one of the eight winckedtions as input parameters.
Several more complex movement algorithms have bde@ned in the clas&xpolndividual and are
thus available to all its subclasses, i.e. torallls mammals and top predators, represented ademobi
organisms. The Random Walk, the Correlated Randaik \CRW), the Lévy Flight (LF), and the
Random Flight (within the home range) algorithme eailled withmoveRND()moveCRW()

movelLK), andmoveRndInSuitHR(yespectively. The algorithm for the (towards ahii¢ habitat)
biased random walk is computationally not the neffitient, because each movement step all eight
surrounding cell (possible next destinations) rtedae analysed for habitat suitability. The CRW and
LF algorithms are more efficient, because they tialye to get the habitat suitability of the ce# th
individual is residing in to derive the movementlod successive step. Because of its better affigie
and the fact that they have been successfully tdjue empirical data, the Correlated Random Walk
movement algorithm is set as the default for thenmalian species. For the bird species the Random
Flight movement algorithm is set as the defaultnf@vement.

Starting cell
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When initialising a new individual in the simulatiats starting position (any cell containing shl&a
habitat and having enough habitat in the surroutiomme range area) can be obtained by calling the
defaultgetRNDSuitableCell@vith the initialising type of species as inputgraeter.

Home range

A home range of an animal is defined as a singtgelExpoCellobject on a higher hierarchy in the
topology, which contains all tho&&poCellobjects of the lowest hierarchy (basic cells) thit

within the area defined by the home range aroustitrting position. All these basic cells are rokedi
is being INNER (see sectidropology of the home range cell and the home range cdifimed as
OUTER of these basic cells.

The implementation of the home range defined aerarchal higher cell in the topology enables the
animal-object to efficiently “sense” its home rangean easily obtain information about other
animals within this area, because al the indivigltiaht are in the lower cells that lie within tharte
range area are automatically contained in the hamge cell. Thus, an individual does not have to
search in all the cells that lie within its homaga; it suffices to search in the home range cell.

5.5.6 Foraging (organism-organism interaction)

Conceptual implementation

The only explicit interaction between organismg ties currently been implemented in the Eco-
SpaCE model is that preys species can be eateretigitpr species. For example, a weasel has access
to all species in its neighbourhood (home rangs],@an eat prey species by killing them. The
predator will forage every day in search of foddt finds its prey species it will try to consurtieem

and it will accumulate the prey item’s biomass @argy and its internal contaminant concentrations

of chemical stressors as contamination. Predagignmewhat different for prey species of different
food web levels.

Predation on plants and invertebrates

Plant and invertebrate species are searched aagkfbby predators at basic cell level. Plants and
invertebrate prey species (organisms of the firstifweb level) are always consumed if they are
available in the cell were the predator residesadrte time of season. They are consumed in
guantities relative to the fractions of the prega@ps in the predator’s diet. This means that ifhel
prey species are available they will be consumdbdrsame proportions as the food fractions of the
prey species in the diet of the predator. If somey gpecies are not available at a certain locatien
food fractions of the remaining prey species acegased proportional to their initial food fractson
until the sum of the available fraction make up%0®@Vhen the biomass of a certain prey species
(resource) is below a certain threshold values #ssumed not to be available anymore; it is assume
not to be profitable anymore to invest time intigyto consume it. This is in line with the in [&éure
reportedgiving up densitie§GUD), the density of resources within a patch at whicindividual ceases
foraging(Brown 1988, Morris and Davidson 2000).

Predation on small mammals

Small mammals are searched at home range levdijgedistance). When small mammal prey
species (organisms of the second food web levelgacountered within the search distance of the
predator, they will be consumed with the chanceaktquthe relative available fractions in the
predator’s diet. This means that prey speciesateamore abundant will be consumed relatively more
than less abundant species.

One way of modelling predation on mobile preysdtedninistically. The number of prey caught is
deterministically derived from a functional respermsirve, i.e. a mathematical description of the
observed relationship between the number of prayglt per predator and prey density, where the
prey density is an emergent property. This can\id approach, at least for voles and probabty fo
many other species. In an experiment of Suretedl. (2000), more voles were killed at the higher
densities during the experiment; the largest nurobeoles was killed at the density of 100 voles/ha
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11 voles in three days. The average numbers o§\kiled at the densities of 4, 8 and 16 voles/ha
were 2.8 (91.03 S.E.), 4.5 (90.7) and 6.5 (91.%hiee days, respectively. The form of the fittedve

3
derived from this data was= (12.5 X

""" R*=0.60, ANOVA; F = 16.24, p = 0.002 (Sundedlal,
145+ x)

2000).

Another, more mechanistic, way is modelling probigbof predation dependent on density dependent
encounter and prey preference. The catching esenbdelled as an emergent property, but the killing
(and consuming) event is modelled stochasticdllg.dredator encounters a (mobile) prey (emergent
property), and the predator is hungry (emergerpgny), then the prey will be caught with a
probability value (stochastic property) derivednirbterature. The probability with which the prey

will be caught is derived from the mean fractiortlo$ prey species in the diet of the predatosuch

a way, prey preference is taken into account. Euorthe higher the density of a prey species, the
higher will be the chance of encountering (and &ty possibly consuming) such a prey species. In
this way the prey density is also taken into actolinis behaviour has, for example, been observed
for the weasel in an English woodland; the weaateldank voles and wood mice in approximate
proportion to their availability (King 1980). Thigedator-prey relation is implemented in the Eco-
SpaCE model.

Software implementation

Sensing

Three basic mechanisms (events, active variabkksnathods) allow the behaviour of individuals and
the environment to be naturally depicted withirragpam. Events have already been described in
section 5.1because they are crucial to understand the sativgplementation time and dynamic
processes. Active variables and methods are deschiere, because they can be useful in designing
predator-prey relations. However, they can be @izeohany other purposes, e.g. in reproduction (sees
section 5.5.7) and graphical output (see sectiby 6.

Active variables

Active variables (Rust and Lorek, 1997) are norattalbutes of classes declared active (through a
C++ template clas&ctive). Active variables are ordinary variables5ooSimbesides the fact that they
may become active when being changed. In fact atiyeavariable of a given type is absolutely
compatible to an ordinary variable of that type.

Active variables—as opposed to normal attributesay tre observed by other objects. If a state
variable is defined as being active, one may aat®sp called observer methods with this variable.
Those observer methods will automatically be ineblkénenever the value of an active variable is
changed. An ‘observer’ object may specify in adeahow to react upon a value change in some
observed attribute. Active variables are well slhitteimplementing the perception of individuals.
Whenever objects that are perceived by an individoange their state, the observing individual is
automatically activated by the simulation engine.

The modeller may assign as many observer methoalset@ctive variable as are needed. Observer
methods may be defined to be invoked before or #ftevalue of an active variable changes (so
called pre- and post-observer).

Once again, the flow of control does not need toriemented by the programmer. The simulation
engine automatically activates all objects obs@ran accessed attribute (Lorek and Sonnenschein
1999).

Active methods

The only difference between active variables atd@enethods is that not attributes but the
activation of methods may be observed. As for actariables, active methods are a good means for
modelling the perception of individuals. Active metls should be used when an observed action does
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not change the state (active variables) of an dbjewhen an object is only interested in the actio
itself but not in its outcome (Lorek and Sonnengthi®99).

Active variables are —among many other applicatiengery useful to model external events (i.e. an
external event is an event that is not caused mbgatt itself but by some other individual, e.giny
hunted). This will be discussed using a simpldieidi predator—prey example. Individuals from two
different species move around in an environmemddgefined by a set of discrete cells. Predator
objects look for prey objects. If they find a p@yject within the same cell, they try to catch ey
object. The prey object itself will try to flee. &acell of the environment automatically storesiadf

all objects that are currently in that cell. Trasnherited through the use of tBeoSimclassCell.

This list of inhabitants is an active variable anay be assigned some observer method. The modeller
may for example assign an observer method thagetierate appropriate events for all prey objects
as soon as a predator object enters that cello&s as a predator object enters a cell, the liatlof
individuals will change. This will automatically ticate the observer method for this list and
consistently generate all necessary events f@reyl objects. All prey objects may then react
accordingly (e.g. try to flee) upon that event.tBig, the modeller just specifies what will happem
certain situation (Lorek and Sonnenschein 1998je Muat this predator-prey example has not been
implemented in the Eco-SpaCE model, prey specieEsmSpaCE do not (yet) show fleeing
behaviour; the example here is described for @betiderstanding of the mechanism and to call
attention to the flexibility of the programming éronment for ecological processes.

5.5.7 Reproduction

Conceptual model

Reproduction will be modelled combining determiigisind stochastic processes. Female individuals
will produce offspring according to probability ttibutions derived from literature, using average
litter size and mean number of litters per year\anihbility around the means. In order to implemen
reproduction in the model, portion of the populatibat can contribute to produce offspring needs to
be known. This portion is assumed to comprise aliumre females. So, firstly, the population hasgo b
divided into males and females. Here it is assuthatthe sex distribution is equally divided.
Secondly, it has to be determined at what age divictual (of the feminine gender) starts
reproducing. Females can become pregnant whenrd¢haet the adult stage. They transfer from the
juvenile to adult stage if they have reached theraye age of sexual maturity. The transfer to the
adult stage can possibly also depend on the wdiginales can not yet go to the adult stage, if they
are relatively underweight even if they have alyeshched the age of sexual maturity.

Once females become adult, they start to mate glting breeding season. During this season they can
become pregnant. If they successfully become pregtige species-specific gestation period starts
and the birth event will be scheduled after a aeriamber of days that equals the gestation period.
During the pregnancy, a female just acts like ahgmindividual, and therefore she can also die, fo
example, caused by predation or starvation. Whisrotiturs, it consequently means that she will no
longer be able to deliver offspring.

Once the pregnancy has been completed successkillihe female survives the gestation period, the
birth event will be executed. In this event the &enwill get a certain number of offspring that is
drawn from a discrete normal distribution aroungl tieean. The offspring will be initiated at the age
of zero days and an average weight at birth.

A female that has given birth to its offspring caate again if it is still breeding season andéf th
species can breed multiple times per year. Thengatops when the breeding season is over or when
the female has already bred an average speciesispember of litters that year.

Energy allocation

Extra energy is required for reproduction. Mostgta have considered gestation and lactation as the
most important reproductive events with respeerergy expenditures for mammals. In this
respective, about 20% of the energy is allocategktation, 80% to lactation (e.g., Oftedal 1985).
However, the variation in this allocation shoulddostantial and almost certainly is a functiothef
relative allocation of time to gestation vs. laiat(Gittleman and Thompson 1988). During the
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gestation period, an increase of 20-30% of theggnexquirement has been reported for mammalian
species (Gittleman and Thompson 1988). For lactdliey report an increase of as much as 35-149%.
For the kestrel (Masman et al 1988) reported & @mergy expenditure during parental care (REE
of 391.5 KJ-day. If we compare this with the average field metabte of a kestrel (321 KJ-d&y
derived with a mean adult weight of 198 g and flaveetric relation for birds from Nagy, 1987) this
amounts to an increase 22% of the normal energynegent. This value is comparable to the range
of 20-30% for the mammals. Therefore the defalliev@f the extra reproductive effort during
gestation is therefore set at 25%. If additiona@lcsps-specific data is found that significantly idéss
from this value, than the value for the speciesoofcern can easily be adapted. If female indivislual
do not find enough food during pregnancy, they stanve.

Millar (1977) developed a formula predicting theneductive effort, i.e. a multiple of the female
requirements and indicates the amount of energyfeéhaales must acquire, relative to her own
maintenance requirements, in order to wean hepiifiig successfully. This is thus the relative egerg
cost during lactation. The formula is:

075

M 075 (23)

Where N = litter-size and = weight (g) at weaning, M = adult weight (g). $tormula will be used
for calculating the extra energy required duringdéion.

Software implementation

The sex of an individual is determined when inisialg the individual simply by calling the method
determineSex()lhis method randomly assigns a sex, each wiegaal chance of 50%. The variable
mature is an active variable of the type Booleamsdon as the individual gets mature, this variable
set to true and the reproduction process is staftedature female can then become pregnant when
the breeding season has started.
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6 Model interface and output

For reading input data, presented in tabular f@ageneric input (and output) module has been
implemented using a source code script written bsk8rdt (2006; table_io.cpp) and extended for
specific needs of the Eco-SpaCE model. It reads platsented in the form of tables of varying sizes
from simple text files. In these files it is assuhtieat each line represents a row. Most lines efita
are presumed to consist of column number of warelsarated by spaces or tabs. There may also be
some blank lines, and some comment lines, whiclk d¥#" in column 1. This input module can
handle tables of the formats: double, integer, clrad.

For writing (intermediate) results to text filespant module has been developed. For examplenguri
the simulation a text file is created that contaithshe individuals that have died. Their main
characteristics will be printed, including, age jgin, internal contaminant concentration and the
cause of death. The causes of death discriminagech@aximum age, starvation, predation, and
toxication. Parallel to this a file with all newmoindividuals is also generated. Further, thedfst
individuals in the simulation can be written tala fit any time during the simulation via the menu
Results->Print individuals

6.1 Graphical user interface

The interactions among agents, and among agentheingnvironment, must be observable for an
IBM to be truly verified and validated. Graphicalen interfaces (GUISs) are an essential tool progdi
this kind of observability (Grimm 2002). For spatizgodels, observing the location of individuals in
space as a model executes, is especially informativ

A framework for small interactive window based apgiions is used as the graphical user interface.
The source code of this GUI has been developeddyehet al (2000). It creates a resizable,
scrollable window. The GUI for the Eco-SpaCE mddelisualised in Figure 9. Additionally a simple
timing mechanism is supported and several menubeaneated, as well as dialogs. The menu,
created for the Eco-SpaCE model, contains a sulufieerthe simulation, including start, stop and
quit functions. A menu for results has been addqutint results to output files.

Figure 9: snapshot of Eco-SpaCE model’s graphical user interface. The coloured patches resemble
different types of vegetation (ecotopes) and the little white and red spots resemble wood mice and
weasels, respectively.

Further an initialisation function is included whiopens an initialisation dialog (Figure 10). This
dialog has been created to set initial settinges€hnclude: the number of individuals per species
placed randomly or (optionally) in locatigxr,y), the metals modelled, and the starting date.
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Figure 10: Snapshot of dialog for initialising the model simulation.

6.2 Observer class

Observer tools and observer actions define howatataollected from the IBM and reported to the
modeller (Grimm and Railsback 2005). The tools dbsavhat information is reported and how (e.g.,
summary statistics written to output files, spatiata reported graphically).

TheObserverclass is used to track changes in cells duringitinelation, i.e. a so-called “on the fly
analysis”. When presence of individuals in a ckmges, the cell is automatically redrawn, displgyi
the individual currently present. This approachisch more efficient than drawing all cells every
time step. Th®bserverclass is also actively tracks the number of indieid (per species) in the
study areaQuterCel) during the simulation. These are then automayicééplayed in the Eco-
SpaCE GUI (Figure 9).
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7 Model Application
7.1 Model Settings

Initialisation

For initialising a simulation, a dialog must be npd, where the initial settings can be specifidte T
initial settings include the number of individualseach species, which contaminants are to be
modelled, and the starting date expressed in luayy, month and year. Optionally, one can specify at
which location (cell withx andy-coordinate) an individual should be placed. I§tisi not specified,

the program automatically places each individuaticemly in its (species-specific) suitable habitat.
The age of the initial individuals is set a randgpimétween just born (age = 0) to maximum ae (
The weight is set according to its species-speidéal weight at timage using the Von Bertalanffy
equation 24:

m=M - (M - mp) e <* (24)

wherem = weight (g) of individual at age(days),M = adult weight (g)m, = weight (g) at birthk =
growth rate (day9, t = age (days).

Input

Use of the Eco-SpaCE model is illustrated withraideypothetical landscape; the available field data
from the preceding model is incorporated into th=lel (see Schippet al 2008, Loost al 2006,
2008), but some ecological processes, such astime@dad reproduction have not yet been
parameterised with real field data. The landscapeists of a 912 x 245 (223440 cells) grid, with a
total area per cell of 25%nfor a total landscape area of 2.85 ha. These celitain information about
the vegetation structure, categorized into 29 geotgpes. Contamination information is included for
three heavy metals: cadmium, nickel and zinc.

The Eco-SpaCE model is currently parameterisethfee vertebrate species, the common vole, the
weasel and the kestrel. All plant and invertebsgiecies are also implemented as potential food and
contaminant sources for the vertebrate speciesnbog details about the species data and the
contamination data, please refer to Lebal (2006, 2008) and Schippet al (2008).

7.2 Results

Verification

Some simulations have been carried out to verifgtivr the model works as it should. The following
iIssues have been verified: movement, growth (dyo@mergy budget), contaminant accumulation,
mortality, predation, and reproduction.

Simulations

Movement

Simulations showed that all movement algorithmskedradequately. For one of those algorithms, the
correlated random walk (CRW), the results (forweasel) are shown in Figure 11. It shows the
movement patterns of three weasels simulated Wwéltorrelated random walk algorithm. In the areas
with ecotopes that are unsuitable for the weaseb&with colour blue and light and dark brown) it
can clearly be seen that the weasels move invelgtstraight paths in search of suitable habitat.

the green and grey areas (suitable habitat fowdasel), the animals walk in paths showing more
curvature. This results in foraging behaviour wheeasels visit suitable habitat more frequentiyitha
unsuitable habitat.
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Figure 11: Movement patterns of three weasels simulated with a correlated random walk algorithm.
Red spots represent successive movement steps, coloured areas represent different ecotope types,
black area is outside the study area.

Growth

Individual growth has been verified for the comnvate for which some validation data was available
(observations by Drozdz 1972 and Grodzinski 19F&jure 12 shows the ideal growth curve of the
common vole (black line).

Growth curve of the common vole
30

— — — — Predicted ideal growth curve

m  observed (Drozdz 1972)

¢ obsened (Grodzinski et al. 1978)
S fr scarce food (50-100 KJ/day)

Body Weight (g)

scarce food (60-100 KJ/day)
O T T T T T T T T T 1

0O 20 40 60 80 100 120 140 160 180 200
Time (days)

Figure 12: Simulated growth curves of the common vole in two scenarios with scarcity of food (thin
blue and brown line), compared to its ideal growth curve (thick black line) and to observed data from
literature (yellow and pink dots).
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The common vole started to grow at the weight eflians (1.85 grams) and increases until it has
reached the adult weight at 23.4 grams. Compahiisga field data from Drozdz (1972) and
Grodzinski (1978), reveals that the growth curte the field data reasonably well. The brown and
blue lines show the simulation of two common vatesvo different scenarios with food scarcity,
with between 50-100 KJ and 60-100 KJ of metabolesahergy form food available per day,
respectively. It shows that the individual, witlsdeenergy available from food, grows a little slowe
when it approaches the adult weight and its firmalyoweight fluctuates around a lower adult body
weight than the individual who has access to maily énergy from food.

Contaminant accumulation

The exposure module has been tested by simulatitigtbe weasel and the common vole in different
situations.

Internal concentration in weasel
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Figure 13: Accumulation of Cd and Zn in two simulated weasels

For the weasel two scenarios have been simulatedias Cadmium (blue) with an absorption
efficiency (k,) of 2% and an elimination rate constant§lof 0.0005 day and a second for zinc
(purple): with an absorption efficiency;{kof 25% and an elimination rate constantlof

0.04 day. Figure 13 shows that the internal concentratisesrwhen weasels eat contaminated food.
It decreases when the weasels do not find foodhande, the net accumulation becomes negative;
they eliminate. In the first scenario (Cd), thengliation is very slow, whereas in scenario two (Zn)
this is rather fast. The uptake of zinc is reldtivdgh compared to cadmium.
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Figure 14: Simulated accumulation of cadmium in the common vole at three different locations.

For the common vole, three individuals were sinedait different location with different contaminant
concentrations in soil, and hence, in the foochefdommon vole. In the simulations food (vegetation
was always available. Their internal cadmium acdatian was predicted in time and Figure 14
shows that the cadmium concentration constantieases. This is as expected, because food that is
contaminated is always available, so there is moidtion phase. Further, the rate at which cadmium
is accumulated hardly decreases; the steady statd reached. This is also expected for cadmium,
because it is known that mammals hardly eliminateadmium, reflected by the low value for the
elimination rate constant {k= 0.0005 day).

Predation

In order to test the predator-prey relationshipypothetical simulation of a wood mouse (prey) and
weasel (predator) population has been carriedit.simulation started with two weasels and
seventy wood mice (Figure 15). Due to predationh@first twenty days, the wood mice population
gradually decreases. Then the population rapidisegses, because after a gestation period of Zl day
new offspring is born. At day 32 a weasel diesahbise of starvation. As a result, the wood mouse
population decreases less rapid; only one weasgémn them. Finally, at day 98 the second weasel
dies and there is no risk of predation for the wooce. Consequently, the wood mouse population
starts to increase rapidly, at intervals (becatiskeogestation period).

Reproduction

To test the reproduction, a scenario without pradeaind with sufficient food has been executed with
a population of wood mice starting with 10 indivadisi (Figure 16). These individuals were randomly
attributed an age and a corresponding weight. EigGrshows that population of wood mice grows at
intervals of with between 2 and 7 newborns pegrlitb 325 individuals after 156 days. Fitting an
exponential curve through the population growtlovehthat the curve fits very well {R 0.98) and
hence the population grows exponentially (until¢herying capacity for the area will be reached).
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Figure 15: Predator-prey relationship in a simulation starting with 2 weasels (predator) and 70 wood
mice (prey)
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Figure 16: Reproduction. Growth of a wood mouse population in a scenario without predators and with
sufficient food, starting at a population of 10 individual of different ages and an approximately equal
sex distribution.
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8 Discussion, Conclusions & Recommendations

8.1 Discussion of model

Verification

The overall verification of the model shows tha irocesses implemented work adequately.

The correlated random walk movement algorithm hasve in Figure 11, allows the organisms to
adapt to their environment by visiting suitable itettmore frequently than non-suitable habitat.
Thereby they increase their fitness.

Figure 12 showed that the individual growth of anaaon vole individual followed the ideal growth
curve when it had access to sufficient food asth@wed that its growth decreased when it could not
find enough food. Further, the ideal growth curitted the observed data form Drozdz (1972) and
Grodzinski (1978) well at visual inspection. Thandgnic energy budget and the individual growth
thus seem to work well.

Figure 13 and 14 showed that the accumulation ¢élsienplemented in the model correctly
functions as a balance between uptake and elimimgtiocesses. Validation of the accumulation of
the metals cadmium and zinc can be found in Schigipal. (2008) and in Loost al.(2008),
respectively.

Population growth is implemented in the model difference between mortality events and birth
events. Figure 15 demonstrated that mortality eveha prey species caused by predation operate
properly. Figure 16 showed that the populationrefyspecies grows exponentially without the
presence of predators. This is in line with thekaeVolterra equations proposed by Lotka (1925) and
Volterra (1926) and describing predator-prey relai were the prey are assumed to have an
unlimited food supply, and to reproduce exponelytiahless subject to predation.

Model input

The model is relatively complex in the sense thabintains many parameters. This implies that the
model also requires many data as input, it is olasive. Eco-SpaCE is set up as a generic model
and is therefore applicable to any contaminatedtion, with food web of terrestrial vertebrates.
However, for different locations with other speciesw input data is needed and should be updated.
Further, data for some parameters (like the reptbekieffort or the shape parameter of correlated
random walk algorithm) are scarce and not alwagilave for the species of concern. This can be
solved by extrapolating the data from speciesithae been studied to input data for the specigsein
model. This extrapolation step brings along extreestainty and the model results might become less
reliable.

LC50 and LC100 data are scarce and difficult toglae to what happens to individuals over a aertai
time period. These values represent the mortalitigeapopulation level and are thus not directly
translatable to the individual. Further, they ageved after a certain number of days over whieh th
experiment was carried out. It is not straightfaisviaow to extrapolate the lethal concentratiorhis t
time period to a period equal to the time stefhefrhodel.

Model resolution

Rather than perceiving time as a continuous phenomen a discrete event simulation time is
simulated at discrete intervals at which eventsindComputationally the time elapsed during one
discrete interval can easily be changed. Howevanynmodel variables are parameterised at fixed
time resolutions. For example, the energy relatedrpeters are defined at time intervals of one day.
The model is therefore less flexible in simulatiiglifferent time scales. A similar situation appli

for the spatial resolution of the model. Computagidt is easy to change the resolution, but tipeiin
data should be updated meeting the new resolutishould also be bared in mind that the spatial
scale might influence processes such as movemdrgaties interaction.

Model structure

49



The object-oriented programming approach closedgmles the way we perceive the real world.
Additionally the C++ programming environment in damation with the EcoSim libraries are flexible
in modelling ecological processes. These factoisenitea suitable and flexible combination to
develop an individual-based exposure model su&casSpaCE. The verification of the model also
demonstrated the suitability of the approach chdgethe modelling purpose; it proved flexible
enough to model all relevant processes. The Ec&Bpaodel is set up in a way, where general
behaviour is defined at thexpolndividuallevel covering all the species-specific classeseéded,
additional modules or specifications at the speleies| can easily be added, because of the hiakrch
and modular structure of the object-oriented apgroa

The Eco-SpaCE model tries to predict effects aptiulation level. Therefore certain population
dynamics were introduced, making the model moreptexy both in the number of processes to be
modelled as in the number of objects modelled demelously. This increased complexity and extend
of the model (number of cells and individuals), emkhe model also demand more computer
processing power. Scenario runs brought to ligat tie simulation time dramatically increased with
an increasing number of individuals simulated. T&igartly caused by the design of 8eheduler
were the list of events per time step is randomtegurevent unrealistic behaviour. This
randomisation probably costs much time.

Model approach

Receptors are integrators of the multiple stressowghich they are exposed. The receptor-oriented
approach used in Eco-SpaCE is facilitated by tdevidual-based modelling approach. Because Eco-
SpaCE is spatially explicit it enables taking iataount the spatial variability of environmental
characteristics, such as contamination. The cortibmaf the receptor-oriented approach with the
spatially explicit approach is especially approeritor predicting cumulative risk.

Recently some other receptor-oriented and spataibjicit models have been developed that address
cumulative exposure to chemical and natural stres3tie model S# developed by Hope (2005)
also incorporates multiple stressors in a spatetplicit context. However, SH is only applied to

one individual at a time in small hypothetical sméos and it does not calculate mortality endpoints
ALMaSS (Topping et al. 2005, Topping and OddersReéed) is a spatially explicit model that
incorporated both chemical (pesticides) and nomrite (land-use change, food availability)
stressors for quantifying their effects on popuolatsize and survival of a bird species. Becaudilit
not model multiple species, predation was not iporated.

The approach followed during the development of-EpaCE was to start simple and only
incorporate the most essential elements that infle¢he endpoints of interest (see section 2.1, wi
the possibility to further extend the model witrdiinal elements and processes. This implicatas th
some elements that might also influence the endpanrght not be included. For example, effects of
contamination on reproductive, developmental, n@tsim, and growth processes are not (yet) taken
into account. Therefore the predicted risk by thetaminant might be an underestimation of the
actual risk for the population.

The inclusion of interactions between individuatsies and natural stress facilitates meaningful
comparison of chemical with biological stressorgbsdicting cumulative mortality risk form
intoxication, predation and shortage of food. Ezpieg risk of different stressors, both chemical an
biological, with the same effect endpoint (i.e. tabty), enables an easy combination of these
multiple risks. It additionally allows comparingeticontribution of the separate stressors to theative
risk. Population survival arises from the indivitltraits like mortality and reproduction. This mean
that if we model the mortality and birth eventdia# individuals, we can determine the survival of a
population. Nature managers are often more inteddstthe survival rate of a population, rathentha
in the information of whether a species is potdigtat risk. This model helps to translate the exyre

of multiple stressors in the environment to a gskipoint that is useful for nature managers.

The Eco-SpaCE model addresses four important entipaientioned in section 2.1. The first two
endpoints (internal contaminant concentration asidindicator) were already incorporated in the
preceding spatially explicit exposure model by Lebal (2006) and Schippet al (2008). The latter
two (population size and number and cause of mbegl are new model endpoints and make this
model interesting for a wider application, becatigeresults for these endpoints are more meaningful
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to nature and risk managers. The model therefsalgmod potential to link risk assessment to risk
management.

8.2 Conclusions

The Eco-SpaCE model is a spatially explicit indiiaftbased exposure model implemented in C++
using an object-oriented approach. The C++ progragnenvironment is flexible in modelling
ecological processes and therefore all relevaribgmal processes required for the construction of
Eco-SpaCE could be implemented relatively easy.dlject-oriented programming approach closely
resembles the way we perceive the real world. fesalt the conceptual model of Eco-SpaCE could
be implemented into the software relatively stréfgfwvard.

It was aimed to make the Eco-SpaCE model as siagppossible, yet modelling all the relevant
processes required for adequately predicting thpants of interest. In the range of models with
increasing complexity, the model should lie somawhmetween a models being too simple to
adequately predict the desired endpoints and makiaiecomes so sophisticated and complex that it
contains too many irrelevant parameters. Incorpayatll desired ecological processes into the model
brings along a few extra parameters. As a resut&EaCE is more complex than its preceding model
(SpaCE; Schippest al.2008). The increased number of input parametekesnia more data intensive
and computationally demanding. Unfortunately, thagled’s input data was not always readily
available, which means that some assumptions aegtf@polations had to be made. This
consequently introduced extra uncertainties inéonttodel results.

The Eco-SpaCE model addresses most ecologicalgzes¢hat are relevant in determining the risk of
several chemical and biological stressors for iidgdials and for a population as a whole. Such
processes include individual growth, food web fefet (predation) and reproduction. The model
verification showed that the processes have beplemented properly and function as expected. The
model is therefore able to predict the cumulatisk to multiple stressors, such as predation,
starvation, toxication, and in the future floodiagd directly compares chemical and biological
stressors. In this way some perspective can bedain the chemical stress in relation to biological
and natural stress. The model calculates the nuaflzraths in a population simulated in a scenario
with several stressors and it tracks the causdsest deaths (i.e. the stressor that contributéteto
death). This allows for an effect assessment ¢émift stressors on population survival, which is
interesting and meaningful information for natunel aisk managers. The model therefore has a good
potential to link risk assessment to risk managearard makes it interesting for a wider application.
The model is currently parameterised for the effectdpoint mortality. In the future, to get a
completer understanding of the total effect anthefrelative contribution of contamination to the
overall risk and assuming that sufficient datavigilable, extra toxicity data for endpoints othear
mortality (such as growth, development, reproduntéic.) could be incorporated into the model at
those ecological processes at which these toxecitipoints act.

8.3 Recommendations

The Eco-SpaCE model quite input intensive and caatimnally demanding. When simulating an
entire food web with all the individuals that consgrthe populations of the species in the food web,
the simulation time rapidly increases. It is recanated to improve the model efficiency in
simulating complex scenarios. To decrease the atioul time the efficiency of the scheduler needs to
be improved, enabling to increase the simulatiGedpvhen simulating many individuals.

Further, the model might be extended with moreildetanodules, for improving the prediction of the
actual risk of multiple stressors for terrestriaftebrates. To get a fully understanding of thaltot
effect of environmental contaminants, effect endfmacting at all processes, such as growth and
reproduction, should be included in the model. fremtthe contaminant transfer from the mothergo it
offspring should be included to improve the prdditof the internal contaminant concentrations.
Specifically for the study area of floodplainsisirecommended to include flooding events. This
allows the model to also predict the risk to anitaltbl physical stressor, namely flooding. Floaglin

is considered as an important stressor in riveaieas.
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